Suppr超能文献

平衡新骨形成和聚合物降解的速率可增强负重异体骨/聚氨酯复合材料在兔股骨缺损中的愈合。

Balancing the rates of new bone formation and polymer degradation enhances healing of weight-bearing allograft/polyurethane composites in rabbit femoral defects.

机构信息

1 Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville, Tennessee.

出版信息

Tissue Eng Part A. 2014 Jan;20(1-2):115-29. doi: 10.1089/ten.TEA.2012.0762. Epub 2013 Oct 2.

Abstract

There is a compelling clinical need for bone grafts with initial bone-like mechanical properties that actively remodel for repair of weight-bearing bone defects, such as fractures of the tibial plateau and vertebrae. However, there is a paucity of studies investigating remodeling of weight-bearing bone grafts in preclinical models, and consequently there is limited understanding of the mechanisms by which these grafts remodel in vivo. In this study, we investigated the effects of the rates of new bone formation, matrix resorption, and polymer degradation on healing of settable weight-bearing polyurethane/allograft composites in a rabbit femoral condyle defect model. The grafts induced progressive healing in vivo, as evidenced by an increase in new bone formation, as well as a decrease in residual allograft and polymer from 6 to 12 weeks. However, the mismatch between the rates of autocatalytic polymer degradation and zero-order (independent of time) new bone formation resulted in incomplete healing in the interior of the composite. Augmentation of the grafts with recombinant human bone morphogenetic protein-2 not only increased the rate of new bone formation, but also altered the degradation mechanism of the polymer to approximate a zero-order process. The consequent matching of the rates of new bone formation and polymer degradation resulted in more extensive healing at later time points in all regions of the graft. These observations underscore the importance of balancing the rates of new bone formation and degradation to promote healing of settable weight-bearing bone grafts that maintain bone-like strength, while actively remodeling.

摘要

临床上迫切需要具有初始类似骨机械性能的骨移植物,这些移植物能够积极重塑,以修复承重骨缺损,如胫骨平台和椎体骨折。然而,目前用于研究承重骨移植物在临床前模型中重塑的研究很少,因此对于这些移植物在体内重塑的机制知之甚少。在这项研究中,我们研究了新骨形成率、基质吸收率和聚合物降解率对可凝固承重聚氨酯/同种异体移植物复合材料在兔股骨髁缺损模型中愈合的影响。研究表明,移植物在体内诱导进行性愈合,新骨形成增加,6 至 12 周时残留同种异体移植物和聚合物减少。然而,自催化聚合物降解率和零级(与时间无关)新骨形成率之间的不匹配导致复合材料内部未完全愈合。用重组人骨形态发生蛋白-2增强移植物不仅增加了新骨形成的速率,而且改变了聚合物的降解机制,使其接近零级过程。随后,新骨形成和聚合物降解速率的匹配导致在移植物的所有区域的后期时间点有更广泛的愈合。这些观察结果强调了平衡新骨形成和降解速率以促进可凝固承重骨移植物愈合的重要性,这些移植物保持类似骨的强度,同时积极重塑。

相似文献

2
Effects of particle size and porosity on in vivo remodeling of settable allograft bone/polymer composites.
J Biomed Mater Res B Appl Biomater. 2015 Nov;103(8):1641-51. doi: 10.1002/jbm.b.33349. Epub 2015 Jan 8.
4
Improving bone formation in a rat femur segmental defect by controlling bone morphogenetic protein-2 release.
Tissue Eng Part A. 2011 Jul;17(13-14):1735-46. doi: 10.1089/ten.TEA.2010.0446. Epub 2011 Apr 3.
5
Synthesis, characterization, and remodeling of weight-bearing allograft bone/polyurethane composites in the rabbit.
Acta Biomater. 2010 Jul;6(7):2394-406. doi: 10.1016/j.actbio.2010.01.030. Epub 2010 Jan 28.
6
Remodeling of injectable, low-viscosity polymer/ceramic bone grafts in a sheep femoral defect model.
J Biomed Mater Res B Appl Biomater. 2017 Nov;105(8):2333-2343. doi: 10.1002/jbm.b.33767. Epub 2016 Aug 10.

引用本文的文献

2
Biomimetic Hydrogel Applications and Challenges in Bone, Cartilage, and Nerve Repair.
Pharmaceutics. 2023 Sep 29;15(10):2405. doi: 10.3390/pharmaceutics15102405.
4
Self-assembling peptides as immunomodulatory biomaterials.
Front Bioeng Biotechnol. 2023 Mar 1;11:1139782. doi: 10.3389/fbioe.2023.1139782. eCollection 2023.
5
Immediate to short-term inflammatory response to biomaterial implanted in calvarium of mice.
Eur J Transl Myol. 2022 Sep 22;33(1):10785. doi: 10.4081/ejtm.2022.10785.
6
A non-invasive smart scaffold for bone repair and monitoring.
Bioact Mater. 2022 May 6;19:499-510. doi: 10.1016/j.bioactmat.2022.04.034. eCollection 2023 Jan.
8
Craniofacial Bone Tissue Engineering: Current Approaches and Potential Therapy.
Cells. 2021 Nov 3;10(11):2993. doi: 10.3390/cells10112993.
9
Applications of Polymeric Composites in Bone Tissue Engineering and Jawbone Regeneration.
Polymers (Basel). 2021 Oct 6;13(19):3429. doi: 10.3390/polym13193429.
10
MSC-Derived Extracellular Vesicles in Preclinical Animal Models of Bone Injury: A Systematic Review and Meta-Analysis.
Stem Cell Rev Rep. 2022 Mar;18(3):1054-1066. doi: 10.1007/s12015-021-10208-9. Epub 2021 Jul 27.

本文引用的文献

1
Strong and tough magnesium wire reinforced phosphate cement composites for load-bearing bone replacement.
J Mech Behav Biomed Mater. 2013 Apr;20:36-44. doi: 10.1016/j.jmbbm.2012.12.012. Epub 2013 Jan 8.
2
Resorbable composites with bioresorbable glass fibers for load-bearing applications. In vitro degradation and degradation mechanism.
Acta Biomater. 2013 Jan;9(1):4868-77. doi: 10.1016/j.actbio.2012.08.052. Epub 2012 Sep 7.
3
Review of bioactive glass: from Hench to hybrids.
Acta Biomater. 2013 Jan;9(1):4457-86. doi: 10.1016/j.actbio.2012.08.023. Epub 2012 Aug 21.
4
Fiber reinforced calcium phosphate cements -- on the way to degradable load bearing bone substitutes?
Biomaterials. 2012 Sep;33(25):5887-900. doi: 10.1016/j.biomaterials.2012.04.053. Epub 2012 May 25.
5
Injectable reactive biocomposites for bone healing in critical-size rabbit calvarial defects.
Biomed Mater. 2012 Apr;7(2):024112. doi: 10.1088/1748-6041/7/2/024112. Epub 2012 Mar 29.
6
Preliminary study on the mineral apposition rate in distal femoral epiphysis of New Zealand white rabbit at skeletal maturity.
Anat Histol Embryol. 2012 Jun;41(3):163-9. doi: 10.1111/j.1439-0264.2011.01119.x. Epub 2011 Dec 8.
7
Fiber-reinforced calcium phosphate cement formulations for cranioplasty applications: a 52-week duration preclinical rabbit calvaria study.
J Biomed Mater Res B Appl Biomater. 2012 May;100(4):1170-8. doi: 10.1002/jbm.b.31920. Epub 2011 Nov 24.
8
Prediction of spatio-temporal bone formation in scaffold by diffusion equation.
Biomaterials. 2011 Oct;32(29):7006-12. doi: 10.1016/j.biomaterials.2011.05.085. Epub 2011 Jun 23.
9
Characterization of the degradation mechanisms of lysine-derived aliphatic poly(ester urethane) scaffolds.
Biomaterials. 2011 Jan;32(2):419-29. doi: 10.1016/j.biomaterials.2010.08.108. Epub 2010 Sep 22.
10
A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair.
Acta Biomater. 2011 Jan;7(1):16-30. doi: 10.1016/j.actbio.2010.07.012. Epub 2010 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验