Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14225-30. doi: 10.1073/pnas.1306345110. Epub 2013 Aug 13.
Activation-induced deaminase (AID), a member of the larger AID/APOBEC family, is the key catalyst in initiating antibody somatic hypermutation and class-switch recombination. The DNA deamination model accounting for AID's functional role posits that AID deaminates genomic deoxycytosine bases within the immunoglobulin locus, activating downstream repair pathways that result in antibody maturation. Although this model is well supported, the molecular basis for AID's selectivity for DNA over RNA remains an open and pressing question, reflecting a broader need to elucidate how AID/APOBEC enzymes engage their substrates. To address these questions, we have synthesized a series of chimeric nucleic acid substrates and characterized their reactivity with AID. These chimeric substrates feature targeted variations at the 2'-position of nucleotide sugars, allowing us to interrogate the steric and conformational basis for nucleic acid selectivity. We demonstrate that modifications to the target nucleotide can significantly alter AID's reactivity. Strikingly, within a substrate that is otherwise DNA, a single RNA-like 2'-hydroxyl substitution at the target cytosine is sufficient to compromise deamination. Alternatively, modifications that favor a DNA-like conformation (or sugar pucker) are compatible with deamination. AID's closely related homolog APOBEC1 is similarly sensitive to RNA-like substitutions at the target cytosine. Inversely, with unreactive 2'-fluoro-RNA substrates, AID's deaminase activity was rescued by introducing a trinucleotide DNA patch spanning the target cytosine and two nucleotides upstream. These data suggest a role for nucleotide sugar pucker in explaining the molecular basis for AID's DNA selectivity and, more generally, suggest how other nucleic acid-modifying enzymes may distinguish DNA from RNA.
激活诱导的脱氨酶(AID)是更大的 AID/APOBEC 家族的成员,是启动抗体体细胞超突变和类别转换重组的关键催化剂。解释 AID 功能作用的 DNA 脱氨酶模型假设 AID 在免疫球蛋白基因座内脱氨酶脱氧胞嘧啶碱基,激活下游修复途径,导致抗体成熟。尽管该模型得到了很好的支持,但 AID 对 DNA 而非 RNA 的选择性的分子基础仍然是一个悬而未决的问题,反映了更广泛地阐明 AID/APOBEC 酶如何与其底物结合的需求。为了解决这些问题,我们合成了一系列嵌合核酸底物,并对其与 AID 的反应性进行了表征。这些嵌合底物在核苷酸糖的 2'位具有靶向变化,使我们能够探究核酸选择性的空间和构象基础。我们证明,目标核苷酸的修饰可以显著改变 AID 的反应性。引人注目地,在其他方面是 DNA 的底物中,目标胞嘧啶上的单个 RNA 样 2' - 羟基取代足以破坏脱氨酶。或者,有利于 DNA 样构象(或糖构象)的修饰与脱氨酶相容。AID 的密切相关的同源物 APOBEC1 对目标胞嘧啶上的 RNA 样取代也同样敏感。相反,对于无反应性的 2' - 氟-RNA 底物,通过引入跨越目标胞嘧啶和上游两个核苷酸的三核苷酸 DNA 补丁,可以挽救 AID 的脱氨酶活性。这些数据表明核苷酸糖构象在解释 AID 的 DNA 选择性的分子基础方面发挥了作用,并且更普遍地表明了其他核酸修饰酶如何区分 DNA 和 RNA。