Suppr超能文献

在体内进行碱基编辑可恢复隐性耳聋小鼠模型中的感觉转导,并短暂改善听觉功能。

In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness.

作者信息

Yeh Wei-Hsi, Shubina-Oleinik Olga, Levy Jonathan M, Pan Bifeng, Newby Gregory A, Wornow Michael, Burt Rachel, Chen Jonathan C, Holt Jeffrey R, Liu David R

机构信息

Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.

出版信息

Sci Transl Med. 2020 Jun 3;12(546). doi: 10.1126/scitranslmed.aay9101.

Abstract

Most genetic diseases arise from recessive point mutations that require correction, rather than disruption, of the pathogenic allele to benefit patients. Base editing has the potential to directly repair point mutations and provide therapeutic restoration of gene function. Mutations of transmembrane channel-like 1 gene () can cause dominant or recessive deafness. We developed a base editing strategy to treat Baringo mice, which carry a recessive, loss-of-function point mutation (; resulting in the substitution p.Y182C) in Tmc1 that causes deafness. encodes a protein that forms mechanosensitive ion channels in sensory hair cells of the inner ear and is required for normal auditory function. We found that sensory hair cells of Baringo mice have a complete loss of auditory sensory transduction. To repair the mutation, we tested several optimized cytosine base editors (CBEmax variants) and guide RNAs in Baringo mouse embryonic fibroblasts. We packaged the most promising CBE, derived from an activation-induced cytidine deaminase (AID), into dual adeno-associated viruses (AAVs) using a split-intein delivery system. The dual AID-CBEmax AAVs were injected into the inner ears of Baringo mice at postnatal day 1. Injected mice showed up to 51% reversion of the point mutation to wild-type sequence () in transcripts. Repair of in vivo restored inner hair cell sensory transduction and hair cell morphology and transiently rescued low-frequency hearing 4 weeks after injection. These findings provide a foundation for a potential one-time treatment for recessive hearing loss and support further development of base editing to correct pathogenic point mutations.

摘要

大多数遗传疾病源于隐性点突变,需要纠正而非破坏致病等位基因才能使患者受益。碱基编辑有直接修复点突变并恢复基因功能的治疗潜力。跨膜通道样蛋白1基因(Tmc1)突变可导致显性或隐性耳聋。我们开发了一种碱基编辑策略来治疗巴林戈小鼠,这些小鼠携带Tmc1基因中的隐性功能丧失点突变(c.545A>G;导致p.Y182C替换),该突变会导致耳聋。Tmc1编码一种在内耳感觉毛细胞中形成机械敏感离子通道的蛋白质,是正常听觉功能所必需的。我们发现巴林戈小鼠的感觉毛细胞完全丧失了听觉感觉转导。为了修复该突变,我们在巴林戈小鼠胚胎成纤维细胞中测试了几种优化的胞嘧啶碱基编辑器(CBEmax变体)和引导RNA。我们使用分裂内含肽递送系统将源自激活诱导胞苷脱氨酶(AID)的最有前景的CBE包装成双腺相关病毒(AAV)。在出生后第1天将双AID-CBEmax AAV注射到巴林戈小鼠的内耳中。注射后的小鼠在Tmc1转录本中显示高达51%的点突变回复为野生型序列(c.545A)。体内Tmc1的修复恢复了内毛细胞的感觉转导和毛细胞形态,并在注射后4周短暂恢复了低频听力。这些发现为隐性听力损失的潜在一次性治疗提供了基础,并支持碱基编辑在纠正致病点突变方面的进一步发展。

相似文献

2
Tmc gene therapy restores auditory function in deaf mice.Tmc基因疗法可恢复耳聋小鼠的听觉功能。
Sci Transl Med. 2015 Jul 8;7(295):295ra108. doi: 10.1126/scitranslmed.aab1996.
7
New Tmc1 Deafness Mutations Impact Mechanotransduction in Auditory Hair Cells.新的 Tmc1 耳聋突变影响听觉毛细胞的力传导。
J Neurosci. 2021 May 19;41(20):4378-4391. doi: 10.1523/JNEUROSCI.2537-20.2021. Epub 2021 Apr 6.

引用本文的文献

1
CRISPR-based functional genomics tools in vertebrate models.脊椎动物模型中基于CRISPR的功能基因组学工具。
Exp Mol Med. 2025 Jul;57(7):1355-1372. doi: 10.1038/s12276-025-01514-0. Epub 2025 Jul 31.
3
precision base editing to rescue mouse models of disease.用于拯救疾病小鼠模型的精准碱基编辑
Mol Ther Nucleic Acids. 2025 Jul 1;36(3):102622. doi: 10.1016/j.omtn.2025.102622. eCollection 2025 Sep 9.
5
Gene therapy for pediatric genetic kidney diseases.小儿遗传性肾脏疾病的基因治疗
Pediatr Discov. 2023 Jun 10;1(1):e16. doi: 10.1002/pdi3.16. eCollection 2023 Jun.
8
Rational Design of Inner Ear Drug Delivery Systems.内耳药物递送系统的合理设计
Adv Sci (Weinh). 2025 Aug;12(29):e2410568. doi: 10.1002/advs.202410568. Epub 2025 May 8.

本文引用的文献

2
Off-Target Editing by CRISPR-Guided DNA Base Editors.CRISPR 引导的 DNA 碱基编辑器的脱靶编辑。
Biochemistry. 2019 Sep 10;58(36):3727-3734. doi: 10.1021/acs.biochem.9b00573. Epub 2019 Aug 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验