Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Campus Morelia, Antigua Carretera a Pátzcuaro No. 8701. Col. Ex-Hacienda de San José de La Huerta, C.P. 58341, Morelia, Michoacán, México.
Oecologia. 2014 Jan;174(1):195-203. doi: 10.1007/s00442-013-2748-y. Epub 2013 Aug 14.
Populations of the same species vary in their secondary metabolite content. This variation has been attributed to biotic and abiotic environmental conditions as well as to historical factors. Some studies have focused on the geographic variation of chemical diversity in plant populations, but whether this structure conforms to a central-marginal model or a mosaic pattern remains unclear. Furthermore, assessing the chemical diversity of invasive plants in their native distribution facilitates the understanding of their relationships with natural enemies. We examined the geographic variation of chemical diversity in Mexican populations of the bittervine weed Mikania micrantha and its relationship to herbivore damage. The foliar volatile terpenoid blend was analyzed in 165 individuals of 14 populations in the Pacific and Gulf of Mexico tropical watersheds. A cluster analysis grouped individuals with similar terpenoid blends into 56 compositional types. Chemical diversity was measured using the number of compounds and their concentration within the blends for individuals, and the number and frequency of compositional types for populations. A stepwise multiple regression analysis performed with geographic, climatic, and chemical diversity variables explained herbivore damage. However, population-level chemical diversity was the only variable found to be significant (β = -0.79, P = 0.042) in the model (R(2) = 0.89). A Mantel test using Euclidean distances did not indicate any separation by geographic origin; however, four barriers were identified using Monmonier's algorithm. We conclude that variation in population-level chemical diversity follows a mosaic pattern in which geographic factors (i.e., natural barriers) have some effect and that variation is also associated with the local intensity of herbivore attack.
同一物种的种群在其次生代谢产物含量上存在差异。这种变异归因于生物和非生物环境条件以及历史因素。一些研究集中于植物种群化学多样性的地理变异,但这种结构是否符合中心-边缘模型或镶嵌模式尚不清楚。此外,评估入侵植物在其原生分布区的化学多样性有助于了解它们与天敌的关系。我们研究了苦藤草 Mikania micrantha 墨西哥种群的化学多样性的地理变异及其与食草动物损害的关系。在太平洋和墨西哥湾热带流域的 14 个种群的 165 个个体中分析了叶挥发萜类混合物。聚类分析将萜类混合物相似的个体分为 56 种组成类型。通过个体萜类混合物中化合物的数量及其浓度以及种群中组成类型的数量和频率来衡量化学多样性。使用地理、气候和化学多样性变量进行的逐步多元回归分析解释了食草动物的损害。然而,种群水平的化学多样性是模型中唯一发现有意义的变量(β=-0.79,P=0.042)(R²=0.89)。使用欧几里得距离的 Mantel 测试没有表明任何由地理起源引起的分离;然而,使用 Monmonier 算法识别了四个障碍。我们得出结论,种群水平化学多样性的变化遵循镶嵌模式,地理因素(即自然障碍)有一定的影响,而且变异也与当地食草动物攻击的强度有关。