State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai, 200050, P. R. China.
Acc Chem Res. 2014 Jan 21;47(1):125-37. doi: 10.1021/ar400091e. Epub 2013 Aug 14.
Colloidal hollow mesoporous silica nanoparticles (HMSNs) are aspecial type of silica-based nanomaterials with penetrating mesopore channels on their shells. HMSNs exhibit unique structural characteristics useful for diverse applications: Firstly, the hollow interiors can function as reservoirs for enhanced loading of guest molecules, or as nanoreactors for the growth of nanocrystals or for catalysis in confined spaces. Secondly, the mesoporous silica shell enables the free diffusion of guest molecules through the intact shell. Thirdly, the outer silica surface is ready for chemical modifications, typically via its abundant Si-OH bonds. As early as 2003, researchers developed a soft-templating methodto prepare hollow aluminosilicate spheres with penetrating mesopores in a cubic symmetry pattern on the shells. However, adapting this method for applications on the nanoscale, especially for biomedicine, has proved difficult because the soft templating micelles are very sensitive to liquid environments, making it difficult to tune key parameters such as dispersity, morphology and structure. In this Account, we present the most recent developments in the tailored construction of highly dispersive and monosized HMSNs using simple silica-etching chemistry, and we discuss these particles' excellent performance in diverse applications. We first introduce general principles of silica-etching chemistry for controlling the chemical composition and the structural parameters (particle size, pore size, etching modalities, yolk-shell nanostructures, etc.) of HMSNs. Secondly, we include recent progress in constructing heterogeneous, multifunctional, hollow mesoporous silica nanorattles via several methods for diverse applications. These elaborately designed HMSNs could be topologically transformed to prepare hollow mesoporous carbon nanoparticles or functionalized to produce HMSN-based composite nanomaterials. Especially in biomedicine, HMSNs are excellent as carriers to deliver either hydrophilic or hydrophobic anti-cancer drugs, to tumor cells, offering enhanced chemotherapeutic efficacy and diminished toxic side effects. Most recently, research has shown that loading one or more anticancer drugs into HMSNs can inhibit metastasis or reverse multidrug resistance of cancer cells. HMSNs could also deliver hydrophobic perfluorohexane (PFH) molecules to improve high intensity focused ultrasound (HIFU) cancer surgery by changing the tissue acoustic environment; and HMSNs could act as nanoreactors for enhanced catalytic activity and/or durability. The versatility of silica-etching chemistry, a simple but scalable synthetic methodology, offers great potential for the creation of new types of HMSN-based nanostructures in a range of applications.
胶体中空介孔硅纳米粒子(HMSNs)是一种特殊类型的基于硅的纳米材料,其壳上具有贯穿的介孔通道。HMSNs 表现出独特的结构特征,可用于各种应用:首先,中空内部可作为增强客体分子负载的储库,或作为纳米晶生长或受限空间内催化的纳米反应器。其次,介孔硅壳允许客体分子通过完整的壳自由扩散。第三,外硅表面可进行化学修饰,通常通过其丰富的 Si-OH 键。早在 2003 年,研究人员就开发了一种软模板法,在壳上制备具有立方对称图案的贯穿介孔的中空铝硅酸盐球体。然而,将这种方法应用于纳米尺度,特别是应用于生物医学领域,已经证明是困难的,因为软模板胶束对液体环境非常敏感,难以调节分散性、形态和结构等关键参数。在本报告中,我们介绍了使用简单的硅蚀刻化学定制构建高分散和单分散 HMSNs 的最新进展,并讨论了这些颗粒在各种应用中的优异性能。我们首先介绍了硅蚀刻化学控制 HMSNs 的化学组成和结构参数(粒径、孔径、蚀刻方式、蛋黄壳纳米结构等)的一般原理。其次,我们包括通过几种方法构建异质、多功能中空介孔硅纳米瓶的最新进展,用于各种应用。这些精心设计的 HMSNs 可以拓扑转化为制备中空介孔碳纳米粒子,或功能化以产生基于 HMSN 的复合材料。特别是在生物医学领域,HMSNs 作为载体可以将亲水性或疏水性抗癌药物递送到肿瘤细胞中,提供增强的化疗疗效和降低的毒副作用。最近的研究表明,将一种或多种抗癌药物装载到 HMSNs 中可以抑制癌细胞的转移或逆转多药耐药性。HMSNs 还可以递送疏水性全氟己烷 (PFH) 分子,通过改变组织声环境来改善高强度聚焦超声 (HIFU) 癌症手术;并且 HMSNs 可以作为纳米反应器,提高催化活性和/或耐久性。硅蚀刻化学的多功能性,一种简单但可扩展的合成方法,为在各种应用中创建新型 HMSN 基纳米结构提供了巨大的潜力。
J Colloid Interface Sci. 2014-12-25
ACS Appl Mater Interfaces. 2017-1-9
Nanomaterials (Basel). 2022-6-6
Materials (Basel). 2024-9-10
Nat Rev Chem. 2024-6
Nanomaterials (Basel). 2021-7-16
Adv Sci (Weinh). 2021-5