Geng Hongya, Chen Weiyu, Xu Zhi Ping, Qian Guangren, An Jing, Zhang Haijiao
Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, P.R. China.
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
Chemistry. 2017 Aug 10;23(45):10878-10885. doi: 10.1002/chem.201701806. Epub 2017 Jul 17.
A series of multifunctional shape-controlled nonspherical hollow mesoporous silica nanoparticles (HMSNs) drug carriers have been prepared by employing Fe O with four morphologies (capsule, cube, rice, and rhombus) as a sacrificial template and a multifunctional cap as the encapsulating shell. The resulting shape-controlled nonspherical HMSNs perfectly replicate the original morphology of the Fe O templates, which possess a high specific surface area, good monodispersity, perpendicular mesoporous channels, and excellent biocompatibility. After modification of polyethylene glycol (PEG) and folic acid (FA), the shape-controlled HMSN core and functional shell can then be integrated into a single device (HMSNs-PEG-FA) to provide an efficient and tumor-cell-selective drug-delivery system. The shape-controlled HMSNs and HMSNs-PEG-FA all show controlled pH-responsive release behavior for the anticancer drug doxorubicin hydrochloride (DOX). The in vitro results indicate that HMSNs-PEG-FA is biocompatible and selectively targets HeLa cells (overexpressed folate receptors). Fluorescence images show that desirable surface modification and the nonspherical shape effectively facilitate cellular internalization of HMSNs. It is expected that the construction of these unique nanomaterials with controlled morphology through the hard-templating technique may also provide useful information for the design of nanoscale multifunctional systems.
通过使用具有四种形态(胶囊状、立方状、米粒状和菱形)的FeO作为牺牲模板以及多功能帽作为包封壳,制备了一系列多功能形状可控的非球形中空介孔二氧化硅纳米颗粒(HMSNs)药物载体。所得的形状可控的非球形HMSNs完美复制了FeO模板的原始形态,这些模板具有高比表面积、良好的单分散性、垂直的介孔通道以及出色的生物相容性。在对聚乙二醇(PEG)和叶酸(FA)进行修饰后,形状可控的HMSN核心和功能壳随后可整合到单个装置(HMSNs-PEG-FA)中,以提供一种高效且肿瘤细胞选择性的药物递送系统。形状可控的HMSNs和HMSNs-PEG-FA对抗癌药物盐酸多柔比星(DOX)均表现出可控的pH响应释放行为。体外结果表明,HMSNs-PEG-FA具有生物相容性且能选择性靶向HeLa细胞(叶酸受体过表达)。荧光图像显示,理想的表面修饰和非球形形状有效地促进了HMSNs的细胞内化。预计通过硬模板技术构建这些具有可控形态的独特纳米材料,也可能为纳米级多功能系统的设计提供有用信息。