Nano-Science Center and Department of Chemistry, University of Copenhagen , Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.
Acc Chem Res. 2014 Jan 21;47(1):2-11. doi: 10.1021/ar3002848. Epub 2013 Aug 14.
A central challenge in molecular electronics is to create electrode pairs separated by only a few nanometers that can accommodate a single molecule of interest to be optically or electrically characterized while residing in the gap. Current techniques for nanogap fabrication are largely based on top-down approaches and often rely on subsequent deposition of molecules into the nanogap. In such an approach, the molecule may bridge the gap differently with each experiment due to variations at the metal-molecule interface. Conversely, chemists can readily synthesize gold nanorods (AuNRs) in aqueous solution. Through controlled end-to-end assembly of the AuNRs into dimers or chains, facilitated via target molecules, they can be used as electrical contacts. In this way, the preparation of AuNR-molecule-AuNR junctions by wet chemical methods may afford a large number of identical devices with little variation in the interface between molecule and electrode (AuNR). In this Account, we highlight recent progress in using chemically synthesized AuNRs as building blocks for molecular electronic applications. We outline the general synthesis and properties of AuNRs and describe the aqueous growth of dimeric AuNR structures from an insulating molecule linked to AuNR precursors (gold seeds). Conjugated, electronically active molecules are typically not soluble under the conditions required for the bottom-up growth of AuNRs. Therefore, we present a strategy that utilizes host-guest chemistry in order to make such π-systems compatible with the AuNR growth procedure. In order to electrically characterize the AuNR-molecule-AuNR constructs, we must transfer them onto a substrate and contact external electrodes. We discuss the implications of using electron-beam lithography for making this contact. In addition, we introduce a novel fabrication approach in which we can grow AuNR nanogap electrodes in situ on prepatterned substrates, thus circumventing post-processing steps that potentially damage the nanogap environment. Due to the inherent optical properties of AuNRs, electromagnetic field enhancement in the nanogaps lets us spectroscopically characterize the molecules via surface-enhanced Raman scattering. We discuss the incorporation of oligopeptides functionalized with acetylene units having uniquely identifiable vibrational modes. This acetylene moiety allows chemical reactions to be performed in the gaps via click chemistry, and the oligopeptide linking platform opens for integration of larger biological components.
分子电子学的一个核心挑战是创建仅相隔几个纳米的电极对,这些电极对可以容纳单个感兴趣的分子,以便在间隙中对其进行光学或电学表征。目前用于纳米间隙制造的技术在很大程度上基于自上而下的方法,并且通常依赖于随后将分子沉积到纳米间隙中。在这种方法中,由于金属-分子界面的变化,每个实验中分子可能会以不同的方式桥接间隙。相反,化学家可以在水溶液中轻松合成金纳米棒(AuNRs)。通过受控的 AuNR 端到端组装成双体或链,通过靶分子进行促进,它们可以用作电接触。通过这种方式,通过湿化学方法制备 AuNR-分子-AuNR 结可以提供大量具有分子和电极(AuNR)之间界面变化很小的相同器件。在本报告中,我们重点介绍了使用化学合成的 AuNR 作为分子电子应用构建块的最新进展。我们概述了 AuNR 的一般合成和性质,并描述了从与 AuNR 前体(金种子)相连的绝缘分子的水中生长二聚 AuNR 结构。共轭的,电子活性分子在 AuNR 生长所需的条件下通常不可溶。因此,我们提出了一种策略,利用主客体化学使这种π系统与 AuNR 生长过程兼容。为了对 AuNR-分子-AuNR 结构进行电特性表征,我们必须将它们转移到基底上并与外部电极接触。我们讨论了使用电子束光刻技术进行这种接触的影响。此外,我们引入了一种新颖的制造方法,我们可以在预图案化的基底上原位生长 AuNR 纳米间隙电极,从而避免了可能破坏纳米间隙环境的后处理步骤。由于 AuNRs 的固有光学特性,纳米间隙中的电磁场增强使我们能够通过表面增强拉曼散射对分子进行光谱表征。我们讨论了在具有独特可识别振动模式的炔烃单元官能化的寡肽的掺入。这个炔烃部分允许通过点击化学在间隙中进行化学反应,并且寡肽连接平台为更大的生物成分的集成打开了大门。