Suppr超能文献

尺寸可控的金属纳米间隙大规模平行阵列,间隙宽度低至亚3纳米级别。

Massively Parallel Arrays of Size-Controlled Metallic Nanogaps with Gap-Widths Down to the Sub-3-nm Level.

作者信息

Luo Sihai, Mancini Andrea, Berté Rodrigo, Hoff Bård H, Maier Stefan A, de Mello John C

机构信息

Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway.

Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, München, 80539, Germany.

出版信息

Adv Mater. 2021 May;33(20):e2100491. doi: 10.1002/adma.202100491. Epub 2021 May 3.

Abstract

Metallic nanogaps (MNGs) are fundamental components of nanoscale photonic and electronic devices. However, the lack of reproducible, high-yield fabrication methods with nanometric control over the gap-size has hindered practical applications. A patterning technique based on molecular self-assembly and physical peeling is reported here that allows the gap-width to be tuned from more than 30 nm to less than 3 nm. The ability of the technique to define sub-3-nm gaps between dissimilar metals permits the easy fabrication of molecular rectifiers, in which conductive molecules bridge metals with differing work functions. A method is further described for fabricating massively parallel nanogap arrays containing hundreds of millions of ring-shaped nanogaps, in which nanometric size control is maintained over large patterning areas of up to a square centimeter. The arrays exhibit strong plasmonic resonances under visible light illumination and act as high-performance substrates for surface-enhanced Raman spectroscopy, with high enhancement factors of up to 3 × 10 relative to thin gold films. The methods described here extend the range of metallic nanostructures that can be fabricated over large areas, and are likely to find many applications in molecular electronics, plasmonics, and biosensing.

摘要

金属纳米间隙(MNGs)是纳米级光子和电子器件的基本组成部分。然而,缺乏对间隙尺寸具有纳米级控制的可重复、高产率制造方法阻碍了其实际应用。本文报道了一种基于分子自组装和物理剥离的图案化技术,该技术可使间隙宽度从30多纳米调节至小于3纳米。该技术能够在不同金属之间定义小于3纳米的间隙,这使得分子整流器的制造变得容易,在分子整流器中,导电分子连接具有不同功函数的金属。本文还进一步描述了一种制造包含数亿个环形纳米间隙的大规模平行纳米间隙阵列的方法,该方法在高达1平方厘米的大面积图案化区域内保持纳米尺寸控制。这些阵列在可见光照射下表现出强烈的等离子体共振,并作为表面增强拉曼光谱的高性能基底,相对于薄金膜具有高达3×10的高增强因子。本文所述方法扩展了可在大面积上制造的金属纳米结构的范围,并且可能在分子电子学、等离子体学和生物传感中找到许多应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afae/11468177/4af36e491fa3/ADMA-33-2100491-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验