Hammond Jules L, Rosamond Mark C, Sivaraya Siva, Marken Frank, Estrela Pedro
Department of Electronic & Electrical Engineering, University of Bath, Bath BA2 7AY, UK.
School of Electronic & Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK.
Sensors (Basel). 2016 Dec 14;16(12):2128. doi: 10.3390/s16122128.
Nanogap sensors have a wide range of applications as they can provide accurate direct detection of biomolecules through impedimetric or amperometric signals. Signal response from nanogap sensors is dependent on both the electrode spacing and surface area. However, creating large surface area nanogap sensors presents several challenges during fabrication. We show two different approaches to achieve both horizontal and vertical coplanar nanogap geometries. In the first method we use electron-beam lithography (EBL) to pattern an 11 mm long serpentine nanogap (215 nm) between two electrodes. For the second method we use inductively-coupled plasma (ICP) reactive ion etching (RIE) to create a channel in a silicon substrate, optically pattern a buried 1.0 mm × 1.5 mm electrode before anodically bonding a second identical electrode, patterned on glass, directly above. The devices have a wide range of applicability in different sensing techniques with the large area nanogaps presenting advantages over other devices of the same family. As a case study we explore the detection of peptide nucleic acid (PNA)-DNA binding events using dielectric spectroscopy with the horizontal coplanar device.
纳米间隙传感器具有广泛的应用,因为它们可以通过阻抗或安培信号提供对生物分子的准确直接检测。纳米间隙传感器的信号响应取决于电极间距和表面积。然而,制造大面积纳米间隙传感器在制造过程中存在几个挑战。我们展示了两种不同的方法来实现水平和垂直共面纳米间隙几何结构。在第一种方法中,我们使用电子束光刻(EBL)在两个电极之间图案化一个11毫米长的蛇形纳米间隙(215纳米)。在第二种方法中,我们使用电感耦合等离子体(ICP)反应离子蚀刻(RIE)在硅衬底中创建一个通道,在阳极键合第二个相同的电极(图案化在玻璃上,直接位于上方)之前,对埋入的1.0毫米×1.5毫米电极进行光学图案化。这些器件在不同的传感技术中具有广泛的适用性,大面积纳米间隙比同系列的其他器件具有优势。作为一个案例研究,我们使用水平共面器件通过介电谱探索肽核酸(PNA)-DNA结合事件的检测。