Detcheverry François, Bocquet Lydéric
Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon 69622 Villeurbanne, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jul;88(1):012106. doi: 10.1103/PhysRevE.88.012106. Epub 2013 Jul 8.
Flows at the nanoscale are subject to thermal fluctuations. In this work, we explore the consequences for a fluid confined within a channel of nanometric size. First, the phenomenon is illustrated on the basis of molecular dynamics simulations. The center of mass of the confined fluid is shown to perform a stochastic, non-Markovian motion, whose diffusion coefficient satisfies Einstein's relation, and which can be further characterized by the fluctuation relation. Next, we develop an analytical description of the thermally induced fluid motion. We compute the time- and space-dependent velocity correlation function, and characterize its dependence on the nanopore shape, size, and boundary slip at the surface. The experimental implications for mass and charge transports are discussed for two situations. For a particle confined within the nanopore, we show that the fluid fluctuating motion results in an enhanced diffusion. The second situation involves a charged nanopore in which fluid motion within the double layer induces a fluctuating electric current. We compute the corresponding contribution to the current power spectrum.
纳米尺度的流动会受到热涨落的影响。在这项工作中,我们探究了限制在纳米尺寸通道内的流体所产生的后果。首先,基于分子动力学模拟对该现象进行了说明。结果表明,受限流体的质心会进行随机的、非马尔可夫运动,其扩散系数满足爱因斯坦关系,并且可以通过涨落关系进一步表征。接下来,我们对热致流体运动进行了理论描述。我们计算了与时间和空间相关的速度关联函数,并表征了其对纳米孔形状、尺寸以及表面边界滑移的依赖性。针对两种情况讨论了对质量和电荷传输的实验意义。对于限制在纳米孔内的粒子,我们表明流体的涨落运动会导致扩散增强。第二种情况涉及一个带电纳米孔,其中双层内的流体运动会感应出一个波动电流。我们计算了对电流功率谱的相应贡献。