Department of Blood-Borne Parasites, Lindsley Kimball Research Institute, New York Blood Center, New York, New York.
Transfusion. 2014 Apr;54(4):982-9. doi: 10.1111/trf.12388. Epub 2013 Aug 14.
Invasion of red blood cells (RBCs) is one of the critical points in the lifecycle of Babesia. The parasite does not invade other host cells. Earlier work has shown that GPA and GPB function as putative receptors during parasite invasion. The primary focus of this study was the delineation of parasite-binding domains on GPA and GPB.
The assay of choice to validate molecules that participate in invasion is an inhibition of invasion assay, in which changes in parasitemia are assessed relative to a wild-type assay (no inhibitors). Inhibition of invasion can be achieved by modification of different components of the assay or by the addition of competitors of the molecules that participate in invasion. In this study purified antibody fragments to various domains on GPA and GPB were tested for magnitude of inhibition of parasite invasion. Effects on invasion were monitored by assessment of Giemsa-stained smears every 24 hours.
Among 10 selected antibodies directed at various epitopes on GPA and GPB, antibodies directed against GPA(M) epitopes had the most severe effect (up to 35%) on inhibition of invasion, followed by antibodies directed against GPB(S) epitope (up to 24%).
This study confirms the role of RBC glycophorins A and B in Babesia divergens invasion and shows that the GPA(M) and GPB(S) epitopes are likely to play an important role in the entry process.
红细胞(RBC)的入侵是巴贝虫生命周期中的关键点之一。寄生虫不会入侵其他宿主细胞。早期的研究表明,GPA 和 GPB 在寄生虫入侵时充当假定的受体。本研究的主要重点是描绘 GPA 和 GPB 上的寄生虫结合域。
验证参与入侵的分子的首选方法是入侵抑制测定,其中通过相对于野生型测定(无抑制剂)评估寄生虫血症的变化来评估。通过修改测定的不同成分或添加参与入侵的分子的竞争物,可以实现入侵的抑制。在这项研究中,针对 GPA 和 GPB 上各种结构域的纯化抗体片段被测试了对寄生虫入侵的抑制程度。通过每 24 小时评估吉姆萨染色的涂片来监测入侵的影响。
在针对 GPA 和 GPB 上各种表位的 10 种选定抗体中,针对 GPA(M)表位的抗体对入侵抑制的影响最大(高达 35%),其次是针对 GPB(S)表位的抗体(高达 24%)。
本研究证实了 RBC 糖蛋白 A 和 B 在巴贝虫属入侵中的作用,并表明 GPA(M)和 GPB(S)表位可能在进入过程中发挥重要作用。