Department of Fundamental Neurosciences, CMU, University of Geneva, 1 rue Michel Servet, 1211, Geneva, Switzerland.
J Math Neurosci. 2013 Aug 14;3(1):16. doi: 10.1186/2190-8567-3-16.
In this paper, we study the dynamics of a quadratic integrate-and-fire neuron, spiking in the gamma (30-100 Hz) range, coupled to a delta/theta frequency (1-8 Hz) neural oscillator. Using analytical and semianalytical methods, we were able to derive characteristic spiking times for the system in two distinct regimes (depending on parameter values): one regime where the gamma neuron is intrinsically oscillating in the absence of theta input, and a second one in which gamma spiking is directly gated by theta input, i.e., windows of gamma activity alternate with silence periods depending on the underlying theta phase. In the former case, we transform the equations such that the system becomes analogous to the Mathieu differential equation. By solving this equation, we can compute numerically the time to the first gamma spike, and then use singular perturbation theory to find successive spike times. On the other hand, in the excitable condition, we make direct use of singular perturbation theory to obtain an approximation of the time to first gamma spike, and then extend the result to calculate ensuing gamma spikes in a recursive fashion. We thereby give explicit formulas for the onset and offset of gamma spike burst during a theta cycle, and provide an estimation of the total number of spikes per theta cycle both for excitable and oscillator regimes.
在本文中,我们研究了一个在伽马(30-100 Hz)范围内尖峰放电的二次积分-点火神经元与一个德尔塔/θ频率(1-8 Hz)神经振荡器的动力学。我们使用分析和半分析方法,能够在两个不同的区域(取决于参数值)推导出系统的特征尖峰时间:一个区域是在没有θ输入的情况下,γ神经元内在地振荡,另一个区域是γ尖峰直接由θ输入门控,即γ活动的窗口根据潜在的θ相位与沉默期交替。在前一种情况下,我们对方程进行变换,使系统变得类似于马蒂厄微分方程。通过求解这个方程,我们可以数值计算第一个γ尖峰的时间,然后使用奇异摄动理论找到后续的尖峰时间。另一方面,在兴奋条件下,我们直接使用奇异摄动理论来获得第一个γ尖峰时间的近似值,然后以递归的方式扩展该结果来计算随后的γ尖峰。因此,我们给出了在一个θ周期内γ尖峰爆发的起始和结束的显式公式,并对兴奋和振荡器两种情况下每个θ周期的总尖峰数进行了估计。