Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom.
J Neurosci. 2013 Aug 14;33(33):13410-24. doi: 10.1523/JNEUROSCI.1534-13.2013.
NMNAT2 is an NAD(+)-synthesizing enzyme with an essential axon maintenance role in primary culture neurons. We have generated an Nmnat2 gene trap mouse to examine the role of NMNAT2 in vivo. Homozygotes die perinatally with a severe peripheral nerve/axon defect and truncated axons in the optic nerve and other CNS regions. The cause appears to be limited axon extension, rather than dying-back degeneration of existing axons, which was previously proposed for the NMNAT2-deficient Blad mutant mouse. Neurite outgrowth in both PNS and CNS neuronal cultures consistently stalls at 1-2 mm, similar to the length of truncated axons in the embryos. Crucially, this suggests an essential role for NMNAT2 during axon growth. In addition, we show that the Wallerian degeneration slow protein (Wld(S)), a more stable, aberrant NMNAT that can substitute the axon maintenance function of NMNAT2 in primary cultures, can also correct developmental defects associated with NMNAT2 deficiency. This is dose-dependent, with extension of life span to at least 3 months by homozygous levels of Wld(S) the most obvious manifestation. Finally, we propose that endogenous mechanisms also compensate for otherwise limiting levels of NMNAT2. This could explain our finding that conditional silencing of a single Nmnat2 allele triggers substantial degeneration of established neurites, whereas similar, or greater, reduction of NMNAT2 in constitutively depleted neurons is compatible with normal axon growth and survival. A requirement for NMNAT2 for both axon growth and maintenance suggests that reduced levels could impair axon regeneration as well as axon survival in aging and disease.
NMNAT2 是一种 NAD(+)合成酶,在原代培养神经元中具有维持轴突的重要作用。我们生成了 Nmnat2 基因捕获小鼠,以研究 NMNAT2 在体内的作用。纯合子在围产期死亡,伴有严重的周围神经/轴突缺陷和视神经以及其他中枢神经系统区域的截断轴突。原因似乎是轴突延伸受限,而不是先前提出的 NMNAT2 缺陷型 Blad 突变小鼠的现有轴突退行性变。PNS 和 CNS 神经元培养物中的神经突生长始终停滞在 1-2mm 处,类似于胚胎中截断轴突的长度。至关重要的是,这表明 NMNAT2 在轴突生长过程中起着至关重要的作用。此外,我们表明,Wallerian 变性慢蛋白 (Wld(S)),一种更稳定的异常 NMNAT,可以替代 NMNAT2 在原代培养物中的轴突维持功能,也可以纠正与 NMNAT2 缺乏相关的发育缺陷。这是剂量依赖性的,通过纯合水平的 Wld(S)将寿命延长至少 3 个月是最明显的表现。最后,我们提出内源性机制也可以补偿 NMNAT2 的水平限制。这可以解释我们的发现,即单一 Nmnat2 等位基因的条件沉默会引发已建立的神经突的大量退行性变,而在组成型耗尽神经元中相似或更大程度的 NMNAT2 减少与正常轴突生长和存活兼容。NMNAT2 对轴突生长和维持的要求表明,水平降低可能会损害衰老和疾病中的轴突再生以及轴突存活。