John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge, UK.
Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge, UK.
Hum Mol Genet. 2019 Feb 1;28(3):448-458. doi: 10.1093/hmg/ddy356.
Nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is an endogenous axon maintenance factor that preserves axon health by blocking Wallerian-like axon degeneration. Mice lacking NMNAT2 die at birth with severe axon defects in both the peripheral nervous system and central nervous system so the complete absence of NMNAT2 in humans is likely to be similarly harmful but probably rare. However, there is evidence of widespread natural variation in human NMNAT2 mRNA expression so it is important to establish whether reduced levels of NMNAT2 have consequences that impact health. While mice that express reduced levels of NMNAT2, either those heterozygous for a silenced Nmnat2 allele or compound heterozygous for one silenced and one partially silenced Nmnat2 allele, remain overtly normal into old age, we now report that Nmnat2 compound heterozygote mice present with early and age-dependent peripheral nerve axon defects. Compound heterozygote mice already have reduced numbers of myelinated sensory axons at 1.5 months and lose more axons, likely motor axons, between 18 and 24 months and, crucially, these changes correlate with early temperature insensitivity and a later-onset decline in motor performance. Slower neurite outgrowth and increased sensitivity to axonal stress are also evident in primary cultures of Nmnat2 compound heterozygote superior cervical ganglion neurons. These data reveal that reducing NMNAT2 levels below a particular threshold compromises the development of peripheral axons and increases their vulnerability to stresses. We discuss the implications for human neurological phenotypes where axons are longer and have to be maintained over a much longer lifespan.
烟酰胺单核苷酸腺苷转移酶 2(NMNAT2)是一种内源性轴突维持因子,通过阻断类似 Wallerian 的轴突退化来维持轴突健康。缺乏 NMNAT2 的小鼠在出生时就因周围神经系统和中枢神经系统的严重轴突缺陷而死亡,因此人类中完全缺乏 NMNAT2 可能同样有害,但可能很少见。然而,人类 NMNAT2 mRNA 表达存在广泛的自然变异证据,因此确定 NMNAT2 水平降低是否会对健康产生影响非常重要。虽然表达 NMNAT2 水平降低的小鼠,无论是杂合子沉默 Nmnat2 等位基因还是杂合子沉默一个和部分沉默一个 Nmnat2 等位基因的复合杂合子,在老年时仍然明显正常,但我们现在报告 Nmnat2 复合杂合子小鼠表现出早期和年龄依赖性的周围神经轴突缺陷。复合杂合子小鼠在 1.5 个月时已经有较少数量的有髓感觉轴突,并且在 18 至 24 个月之间失去更多的轴突,可能是运动轴突,并且重要的是,这些变化与早期温度不敏感和后期运动功能下降相关。在 Nmnat2 复合杂合子的颈上神经节神经元的原代培养中,还可以观察到神经突生长速度较慢和对轴突应激的敏感性增加。这些数据表明,将 NMNAT2 水平降低到特定阈值以下会损害周围轴突的发育,并增加它们对应激的脆弱性。我们讨论了这些发现对人类神经表型的影响,在人类中,轴突更长,并且必须在更长的寿命内维持。