Schlömann M, Schmidt E, Knackmuss H J
Institut für Mikrobiologie, Universität Stuttgart, Federal Republic of Germany.
J Bacteriol. 1990 Sep;172(9):5112-8. doi: 10.1128/jb.172.9.5112-5118.1990.
Of various benzoate-utilizing bacteria tested, Alcaligenes eutrophus 335, A. eutrophus H16, A. eutrophus JMP222, A. eutrophus JMP134, Alcaligenes strain A7, and Pseudomonas cepacia were able to grow with 4-fluorobenzoate as the sole source of carbon and energy. P. cepacia also utilizes 3-fluorobenzoate. Except for A. eutrophus JMP134, which is known to grow with 2,4-dichlorophenoxyacetate and 3-chlorobenzoate (R. H. Don and J. M. Pemberton, J. Bacteriol. 145:681-686, 1981), the strains were unable to grow at the expense of these compounds or 4-chlorobenzoate. Assays of cell extracts revealed that all strains express dienelactone hydrolase and maleylacetate reductase activities in addition to enzymes of the catechol branch of the 3-oxoadipate pathway when growing with 4-fluorobenzoate. Induction of dienelactone hydrolase and maleylacetate reductase apparently is not necessarily connected to synthesis of catechol 1,2-dioxygenase type II and chloromuconate cycloisomerase activities, which are indispensable for the degradation of chlorocatechols. Substrate specificities of the dienelactone hydrolases provisionally differentiate among three types of this activity. (i) Extracts of A. eutrophus 335, A. eutrophus H16, A. eutrophus JMP222, and Alcaligenes strain A7 convert trans-4-carboxymethylenebut-2-en-4-olide (trans-dienelactone) much faster than the cis-isomer (type I). (ii) The enzyme present in P. cepacia shows the opposite preference for the isomeric substrates (type II). (iii) Cell extracts of A. eutrophus JMP134, as well as purified dienelactone hydrolase from Pseudomonas strain B13 (E. Schmidt and H.-J. Knackmuss, Biochem. J. 192:339-347, 1980), hydrolyze both dienelactones at rates that are of the same order of magnitude (type III). This classification implies that A. eutrophus JMP134 possesses at least two different dienelactone hydrolases, one of type III encoded by the plasmid pJP4 and one of type I, which is also present in the cured strain JMP222.
在测试的多种利用苯甲酸盐的细菌中,真养产碱菌335、真养产碱菌H16、真养产碱菌JMP222、真养产碱菌JMP134、产碱菌菌株A7和洋葱伯克霍尔德菌能够以4-氟苯甲酸盐作为唯一碳源和能源生长。洋葱伯克霍尔德菌也利用3-氟苯甲酸盐。除了已知能利用2,4-二氯苯氧基乙酸和3-氯苯甲酸盐生长的真养产碱菌JMP134(R. H. 唐和J. M. 彭伯顿,《细菌学杂志》145:681 - 686, 1981)外,这些菌株不能以这些化合物或4-氯苯甲酸盐为代价生长。对细胞提取物的测定表明,当以4-氟苯甲酸盐生长时,所有菌株除了3-氧代己二酸途径的儿茶酚分支的酶外,还表达二烯内酯水解酶和马来酰乙酸还原酶活性。二烯内酯水解酶和马来酰乙酸还原酶的诱导显然不一定与儿茶酚1,2-双加氧酶II型和氯粘康酸环异构酶活性的合成相关,而这两种酶对于氯代儿茶酚的降解是必不可少的。二烯内酯水解酶的底物特异性暂时区分出三种这种活性类型。(i)真养产碱菌335、真养产碱菌H16、真养产碱菌JMP222和产碱菌菌株A7的提取物转化反式-4-羧甲基-2-烯-4-醇内酯(反式二烯内酯)的速度比顺式异构体快得多(I型)。(ii)洋葱伯克霍尔德菌中存在的酶对异构底物表现出相反的偏好(II型)。(iii)真养产碱菌JMP134的细胞提取物以及来自假单胞菌菌株B13的纯化二烯内酯水解酶(E. 施密特和H.-J. 克纳克穆斯,《生物化学杂志》192:339 - 347, 1980)以相同数量级的速率水解两种二烯内酯(III型)。这种分类意味着真养产碱菌JMP134至少拥有两种不同的二烯内酯水解酶,一种是由质粒pJP4编码的III型,另一种是I型,在治愈菌株JMP222中也存在。