Miller L M, Carlson C S, Carr G L, Chance M R
Center for Synchrotron Biosciences, Albert Einstein College of Medicine and The National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA.
Cell Mol Biol (Noisy-le-grand). 1998 Feb;44(1):117-27.
Infrared microspectroscopy combines microscopy and spectroscopy for the purpose of chemical microanalysis. Light microscopy provides a way to generate and record magnified images and visibly resolve microstructural detail. Infrared spectroscopy provides a means for analyzing the chemical makeup of materials. Combining light microscopy and infrared spectroscopy permits the correlation of microstructure with chemical composition. Inherently, the long wavelengths of infrared radiation limit the spatial resolution of the technique. However, synchrotron infrared radiation significantly improves both the spectral and spatial resolution of an infrared microspectrometer, such that data can be obtained with high signal-to-noise at the diffraction limit, which is 3-5 microm in the mid-infrared region. In this study, we use infrared microspectroscopy to study the chemical composition of bone using two mapping methods. In the osteon method, linear maps are collected from the center of an osteon (newer bone) to the periphery (older bone) and their chemical compositions are compared. In the transverse method, applied specifically to subchondral bone, line maps are collected from the edge of the articular cartilage (older bone) to the marrow space (newer bone). A significant advantage of infrared microspectroscopy over other chemical methods is that the bone does not need to be homogenized for testing; we are able to study cross-sectional samples of bone in situ at a resolution better than 5 microm and compare the results with morphological findings on stained serial sections immediately adjacent to those examined by infrared microspectroscopy. The infrared absorption bands of bone proteins and mineral are sensitive to mineral content (i.e. carbonate, phosphate, acid phosphate), mineral crystallinity and the content/nature of the organic matrix. In this study, they are analyzed as a function of (1) age, i.e. distance with respect to the center of an osteon, and (2) morphology, i.e. cortical versus cancellous (notably subchondral) bone. Results show that the protein/mineral ratio is higher in younger bone. As bone matures, mineralization increases, as does carbonate substitution into the hydroxyapatite lattice. Finally, most of the changes in chemical composition of bone occur within 20 microm of the site of new bone growth, e.g. the center of an osteon, demonstrating the need for the high spatial resolution achieved only with the use of a synchrotron infrared source.
红外显微光谱法将显微镜技术与光谱技术相结合,用于化学微分析。光学显微镜提供了一种生成和记录放大图像并清晰分辨微观结构细节的方法。红外光谱法提供了一种分析材料化学组成的手段。将光学显微镜和红外光谱法结合起来,可以将微观结构与化学成分关联起来。本质上,红外辐射的长波长限制了该技术的空间分辨率。然而,同步辐射红外辐射显著提高了红外光谱仪的光谱分辨率和空间分辨率,从而能够在衍射极限(中红外区域为3 - 5微米)下以高信噪比获取数据。在本研究中,我们使用红外显微光谱法通过两种映射方法研究骨骼的化学成分。在骨单位法中,从骨单位(新骨)中心到外周(老骨)收集线性图谱,并比较它们的化学成分。在横向法中,专门应用于软骨下骨,从关节软骨边缘(老骨)到骨髓腔(新骨)收集线图谱。红外显微光谱法相对于其他化学方法的一个显著优势是,骨骼无需匀浆即可进行测试;我们能够以优于5微米的分辨率原位研究骨骼的横截面样本,并将结果与紧邻红外显微光谱法检测样本的染色连续切片的形态学发现进行比较。骨骼蛋白质和矿物质的红外吸收带对矿物质含量(即碳酸盐、磷酸盐、酸性磷酸盐)、矿物质结晶度以及有机基质的含量/性质敏感。在本研究中,它们被分析为(1)年龄的函数,即相对于骨单位中心的距离,以及(2)形态的函数,即皮质骨与松质骨(特别是软骨下骨)。结果表明,年轻骨骼中的蛋白质/矿物质比率更高。随着骨骼成熟,矿化增加,碳酸盐替代进入羟基磷灰石晶格的情况也增加。最后,骨骼化学成分的大多数变化发生在新骨生长部位(如骨单位中心)的20微米范围内,这表明需要使用同步辐射红外光源才能实现高空间分辨率。