Suppr超能文献

Alpha-tocopherol in the brain tissue preservation of stroke-prone spontaneously hypertensive rats.

作者信息

Murad Leonardo Borges, Guimarães Marcela Rodrigues Moreira, Paganelli Aline, de Oliveira Carlos Alberto Basílio, Vianna Lucia Marques

机构信息

Laboratory of Nutritional Investigation and Degenerative-Chronic Diseases, Federal University of Rio de Janeiro State (Doctoral Program in Neurology - UNIRIO), 290 Xavier Sigaud Street, Urca, Rio de Janeiro, Rio de Janeiro, 22290-240, Brazil,

出版信息

J Physiol Biochem. 2014 Mar;70(1):49-60. doi: 10.1007/s13105-013-0279-y. Epub 2013 Aug 15.

Abstract

Oxidative stress has an important role in neuronal damage during cerebral ischemia and can lead to cognitive and behavioral impairment. Alpha-tocopherol, a powerful antioxidant, may be able to preserve neuronal tissue and circumvent neurological deficits. Thus, this study aimed to investigate the influence of alpha-tocopherol in the preservation of brain tissue and the maintenance of memory formation in stroke-prone spontaneously hypertensive rats (SHRSP). To achieve this aim, twenty-four 15-week-old male SHRSP rats were separated into the following four groups (n = 6 each) that received different treatments over a 4-week period: the alpha-tocopherol group, the control group, the L-NAME group, and the L-NAME + alpha-tocopherol group. We evaluated the physiological parameters (body weight, diuresis, and food and water intake), an oxidative stress marker (malondialdehyde levels), and neurological responses (the Morris Water Maze and Novel Objects Recognition tests). Afterwards, the brains were removed for histopathological analysis and quantification of the number of cells in the hippocampus. Statistically, the alpha-tocopherol group demonstrated better results when compared to all groups. The data indicated a reduction in oxidative stress and the preservation of neurological responses in groups treated with alpha-tocopherol. In contrast, the L-NAME group exhibited increased malondialdehyde levels, impairment of neurological responses, and several hippocampus tissue injuries. The others groups exhibited nerve tissue changes that were restricted to the glial nodes. No significant alterations were observed in the physiologic parameters. Based on these findings, we suggest that alpha-tocopherol can prevent stroke, preserve the structure of the hippocampus, and maintain both memory and cognition functions.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验