Sun Yanqing, Wang Huixia Judy, Gilbert Peter B
Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223.
Stat Sin. 2012 Apr 1;22(2):703-728. doi: 10.5705/ss.2010.093.
This paper considers generalized linear quantile regression for competing risks data when the failure type may be missing. Two estimation procedures for the regression co-efficients, including an inverse probability weighted complete-case estimator and an augmented inverse probability weighted estimator, are discussed under the assumption that the failure type is missing at random. The proposed estimation procedures utilize supplemental auxiliary variables for predicting the missing failure type and for informing its distribution. The asymptotic properties of the two estimators are derived and their asymptotic efficiencies are compared. We show that the augmented estimator is more efficient and possesses a double robustness property against misspecification of either the model for missingness or for the failure type. The asymptotic covariances are estimated using the local functional linearity of the estimating functions. The finite sample performance of the proposed estimation procedures are evaluated through a simulation study. The methods are applied to analyze the 'Mashi' trial data for investigating the effect of formula-versus breast-feeding plus extended infant zidovudine prophylaxis on HIV-related death of infants born to HIV-infected mothers in Botswana.
本文考虑了在失效类型可能缺失的情况下,用于竞争风险数据的广义线性分位数回归。在失效类型随机缺失的假设下,讨论了两种回归系数的估计方法,包括逆概率加权完全病例估计器和增强逆概率加权估计器。所提出的估计方法利用补充辅助变量来预测缺失的失效类型并告知其分布。推导了两种估计器的渐近性质并比较了它们的渐近效率。我们表明,增强估计器更有效,并且对缺失模型或失效类型模型的错误设定具有双重稳健性。使用估计函数的局部函数线性来估计渐近协方差。通过模拟研究评估了所提出估计方法的有限样本性能。这些方法被应用于分析“马希”试验数据,以研究配方奶喂养与母乳喂养加婴儿齐多夫定延长预防对博茨瓦纳感染艾滋病毒母亲所生婴儿与艾滋病毒相关死亡的影响。