Suppr超能文献

非洲淋巴丝虫病流行率的制图、贝叶斯地统计学分析和空间预测。

Mapping, bayesian geostatistical analysis and spatial prediction of lymphatic filariasis prevalence in Africa.

机构信息

Department of Infectious Disease Epidemiology, Imperial College London, St. Mary's Campus, Norfolk Place, London, United Kingdom.

出版信息

PLoS One. 2013 Aug 12;8(8):e71574. doi: 10.1371/journal.pone.0071574. eCollection 2013.

Abstract

There is increasing interest to control or eradicate the major neglected tropical diseases. Accurate modelling of the geographic distributions of parasitic infections will be crucial to this endeavour. We used 664 community level infection prevalence data collated from the published literature in conjunction with eight environmental variables, altitude and population density, and a multivariate Bayesian generalized linear spatial model that allows explicit accounting for spatial autocorrelation and incorporation of uncertainty in input data and model parameters, to construct the first spatially-explicit map describing LF prevalence distribution in Africa. We also ran the best-fit model against predictions made by the HADCM3 and CCCMA climate models for 2050 to predict the likely distributions of LF under future climate and population changes. We show that LF prevalence is strongly influenced by spatial autocorrelation between locations but is only weakly associated with environmental covariates. Infection prevalence, however, is found to be related to variations in population density. All associations with key environmental/demographic variables appear to be complex and non-linear. LF prevalence is predicted to be highly heterogenous across Africa, with high prevalences (>20%) estimated to occur primarily along coastal West and East Africa, and lowest prevalences predicted for the central part of the continent. Error maps, however, indicate a need for further surveys to overcome problems with data scarcity in the latter and other regions. Analysis of future changes in prevalence indicates that population growth rather than climate change per se will represent the dominant factor in the predicted increase/decrease and spread of LF on the continent. We indicate that these results could play an important role in aiding the development of strategies that are best able to achieve the goals of parasite elimination locally and globally in a manner that may also account for the effects of future climate change on parasitic infection.

摘要

人们越来越有兴趣控制或消灭主要的被忽视热带病。准确建模寄生虫感染的地理分布对于这一努力至关重要。我们使用了 664 项来自已发表文献的社区级感染流行率数据,结合了 8 个环境变量(海拔和人口密度)以及一个多元贝叶斯广义线性空间模型,该模型允许明确考虑空间自相关,并纳入输入数据和模型参数的不确定性,以构建第一个描述非洲 LF 流行率分布的空间明确地图。我们还根据 HADCM3 和 CCCMA 气候模型对 2050 年的预测运行了最佳拟合模型,以预测未来气候和人口变化下 LF 的可能分布。我们表明,LF 的流行率受到地理位置之间的空间自相关的强烈影响,但与环境协变量的关联较弱。然而,感染流行率与人口密度的变化有关。与关键环境/人口变量的所有关联似乎都是复杂的和非线性的。LF 的流行率预计在整个非洲高度不均匀,高流行率(>20%)主要估计发生在沿海的西非和东非,而该大陆中部的流行率预测最低。然而,误差图表明需要进一步调查,以克服后者和其他地区数据稀缺的问题。对未来流行率变化的分析表明,人口增长而不是气候变化本身将成为预测非洲大陆 LF 增加/减少和传播的主要因素。我们指出,这些结果可以在帮助制定策略方面发挥重要作用,这些策略能够以一种可能考虑未来气候变化对寄生虫感染影响的方式,在本地和全球范围内最好地实现寄生虫消除的目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b63e/3741112/b2f79780f98e/pone.0071574.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验