Suppr超能文献

流行病学中的因果思维和复杂系统方法。

Causal thinking and complex system approaches in epidemiology.

机构信息

Center for Social Epidemiology and Population Health, Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029, USA.

出版信息

Int J Epidemiol. 2010 Feb;39(1):97-106. doi: 10.1093/ije/dyp296. Epub 2009 Oct 9.

Abstract

Identifying biological and behavioural causes of diseases has been one of the central concerns of epidemiology for the past half century. This has led to the development of increasingly sophisticated conceptual and analytical approaches focused on the isolation of single causes of disease states. However, the growing recognition that (i) factors at multiple levels, including biological, behavioural and group levels may influence health and disease, and (ii) that the interrelation among these factors often includes dynamic feedback and changes over time challenges this dominant epidemiological paradigm. Using obesity as an example, we discuss how the adoption of complex systems dynamic models allows us to take into account the causes of disease at multiple levels, reciprocal relations and interrelation between causes that characterize the causation of obesity. We also discuss some of the key difficulties that the discipline faces in incorporating these methods into non-infectious disease epidemiology. We conclude with a discussion of a potential way forward.

摘要

识别疾病的生物学和行为学原因一直是过去半个世纪流行病学的核心关注点之一。这导致了越来越复杂的概念和分析方法的发展,这些方法侧重于孤立疾病状态的单一原因。然而,人们越来越认识到:(i)包括生物、行为和群体层面在内的多个层面的因素可能会影响健康和疾病,以及 (ii)这些因素之间的相互关系通常包括动态反馈和随时间的变化,这对这一占主导地位的流行病学范式提出了挑战。我们以肥胖为例,讨论了采用复杂系统动力学模型如何使我们能够考虑到多个层面的疾病原因、相互关系以及肥胖病因的特征之间的因果关系。我们还讨论了该学科在将这些方法纳入非传染性疾病流行病学方面所面临的一些关键困难。最后,我们讨论了一种潜在的前进方向。

相似文献

1
Causal thinking and complex system approaches in epidemiology.流行病学中的因果思维和复杂系统方法。
Int J Epidemiol. 2010 Feb;39(1):97-106. doi: 10.1093/ije/dyp296. Epub 2009 Oct 9.
6
Causal inference based on counterfactuals.基于反事实的因果推断。
BMC Med Res Methodol. 2005 Sep 13;5:28. doi: 10.1186/1471-2288-5-28.
7
Causation and prediction in epidemiology: a guide to the "methodological revolution".流行病学中的因果关系与预测:“方法革命”指南
Stud Hist Philos Biol Biomed Sci. 2015 Dec;54:72-80. doi: 10.1016/j.shpsc.2015.06.004. Epub 2015 Jul 10.
8
The role of counterfactual theory in causal reasoning.反事实理论在因果推理中的作用。
Ann Epidemiol. 2016 Oct;26(10):681-682. doi: 10.1016/j.annepidem.2016.08.017. Epub 2016 Aug 31.

引用本文的文献

3
The Impact of Federal and State Laws on Cardiovascular Risk.联邦和州法律对心血管风险的影响。
Curr Cardiol Rep. 2025 Aug 7;27(1):121. doi: 10.1007/s11886-025-02277-w.
5
Perspective: Advancing the science regarding temporomandibular disorders.观点:推进颞下颌关节紊乱病的科学研究。
Front Dent Med. 2024 May 16;5:1374883. doi: 10.3389/fdmed.2024.1374883. eCollection 2024.
6

本文引用的文献

1
Climate change and malaria in Canada: a systems approach.加拿大的气候变化与疟疾:一种系统方法。
Interdiscip Perspect Infect Dis. 2009;2009:385487. doi: 10.1155/2009/385487. Epub 2009 Jan 4.
4
5
Integrating social and biologic factors in health research: a systems view.整合健康研究中的社会和生物因素:系统视角。
Ann Epidemiol. 2007 Jul;17(7):569-74. doi: 10.1016/j.annepidem.2007.03.001. Epub 2007 Jun 6.
6
Causal system modeling in chronic disease epidemiology: a proposal.慢性病流行病学中的因果系统建模:一项提议。
Ann Epidemiol. 2007 Jul;17(7):564-8. doi: 10.1016/j.annepidem.2006.10.014. Epub 2007 Feb 27.
8
The eco- in eco-epidemiology.生态流行病学中的“生态”一词。
Int J Epidemiol. 2006 Dec;35(6):1379-83. doi: 10.1093/ije/dyl249. Epub 2006 Nov 24.
9
Everything should be made as simple as possible but not simpler.凡事都应尽可能简单,但不能过于简单。
Int J Epidemiol. 2006 Jun;35(3):513-4. doi: 10.1093/ije/dyl101. Epub 2006 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验