Department of Physics, ETH Zurich, CH-8093 Zurich, Switzerland.
Nature. 2013 Aug 15;500(7462):319-22. doi: 10.1038/nature12422.
Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science. At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates, the creation of complex entangled states and the demonstration of algorithms or error correction. Using different variants of low-noise parametric amplifiers, dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous and discrete feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture. We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10(4) s(-1), exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes.
基于超导电子电路的工程宏观量子系统在实验探索量子信息科学中的各种问题方面具有吸引力。在当前的技术水平下,量子位(qubit)在简单的电路中被制造、初始化、控制、读出和相互耦合。这使得基本逻辑门的实现、复杂纠缠态的产生以及算法或纠错的演示成为可能。使用不同的低噪声参量放大器变体,以高保真度对单量子比特状态进行单次量子非破坏读出的离散和连续反馈控制,实现了单量子比特的离散和连续反馈控制。在这里,我们在基于芯片的超导电路架构中实现了具有前馈的全确定性量子隐形传态。我们使用一组两个参量放大器进行联合双量子比特和单个量子比特的单次量子比特读出,结合灵活的实时数字电子技术。我们的设备使用交叉量子总线技术,允许我们在平面架构中创建具有任意连接拓扑的复杂网络。确定性隐形传态过程以单位概率成功,因为我们准备最大纠缠的双量子比特状态作为资源,并以高效率和高保真度在单次双量子比特测量中区分所有贝尔态。我们以 10(4) s(-1)的速率在相隔 6 毫米的两个宏观系统之间传输量子态,这超过了其他报道的实现。超导波导的低传输损耗可能会使这种和其他方案的范围扩展到更大的距离,从而能够测试非局部性并实现微波频率的量子通信元件。所演示的前馈也可能在纠错方案中找到应用。