Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
Nat Commun. 2013;4:2341. doi: 10.1038/ncomms3341.
Van der Waals interactions have a fundamental role in biology, physics and chemistry, in particular in the self-assembly and the ensuing function of nanostructured materials. Here we utilize an efficient microscopic method to demonstrate that van der Waals interactions in nanomaterials act at distances greater than typically assumed, and can be characterized by different scaling laws depending on the dimensionality and size of the system. Specifically, we study the behaviour of van der Waals interactions in single-layer and multilayer graphene, fullerenes of varying size, single-wall carbon nanotubes and graphene nanoribbons. As a function of nanostructure size, the van der Waals coefficients follow unusual trends for all of the considered systems, and deviate significantly from the conventionally employed pairwise-additive picture. We propose that the peculiar van der Waals interactions in nanostructured materials could be exploited to control their self-assembly.
范德华相互作用在生物学、物理学和化学中都具有基础性作用,尤其是在纳米结构材料的自组装和后续功能中。在这里,我们利用一种高效的微观方法证明,纳米材料中的范德华相互作用可以在大于通常假设的距离起作用,并且可以根据系统的维度和尺寸表现出不同的标度定律。具体来说,我们研究了单层和多层石墨烯、不同尺寸的富勒烯、单壁碳纳米管和石墨烯纳米带中范德华相互作用的行为。作为纳米结构尺寸的函数,所有考虑的系统中的范德华系数都呈现出不寻常的趋势,并且与通常采用的对加性图像有很大的偏离。我们提出,纳米结构材料中特殊的范德华相互作用可以被利用来控制它们的自组装。