Suppr超能文献

利用机器学习实现分子原子化能的快速、精确建模。

Fast and accurate modeling of molecular atomization energies with machine learning.

机构信息

Machine Learning Group, Technical University of Berlin, Franklinstr 28/29, 10587 Berlin, Germany.

出版信息

Phys Rev Lett. 2012 Feb 3;108(5):058301. doi: 10.1103/PhysRevLett.108.058301. Epub 2012 Jan 31.

Abstract

We introduce a machine learning model to predict atomization energies of a diverse set of organic molecules, based on nuclear charges and atomic positions only. The problem of solving the molecular Schrödinger equation is mapped onto a nonlinear statistical regression problem of reduced complexity. Regression models are trained on and compared to atomization energies computed with hybrid density-functional theory. Cross validation over more than seven thousand organic molecules yields a mean absolute error of ∼10  kcal/mol. Applicability is demonstrated for the prediction of molecular atomization potential energy curves.

摘要

我们提出了一种机器学习模型,仅基于核电荷和原子位置来预测各种有机分子的雾化能。将求解分子薛定谔方程的问题转化为简化复杂性的非线性统计回归问题。在杂交密度泛函理论计算的雾化能上训练和比较回归模型。对超过 7000 个有机分子进行交叉验证,得到的平均绝对误差约为 10 kcal/mol。该模型在预测分子雾化势能曲线方面的适用性得到了验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验