Suppr超能文献

CT 画笔与癌症电击游戏!:两款用于计算机断层扫描剂量最小化的电子游戏。

CT brush and CancerZap!: two video games for computed tomography dose minimization.

作者信息

Alvare Graham, Gordon Richard

机构信息

BioInformation Technology Laboratory, Department of Plant Science, University of Manitoba, E2-532 EITC, Winnipeg, R3T 2N2, MB, Canada.

Current address: Faculty of Medicine, University of Manitoba, Box 107, Winnipeg, Canada.

出版信息

Theor Biol Med Model. 2015 May 12;12:7. doi: 10.1186/s12976-015-0003-4.

Abstract

BACKGROUND

X-ray dose from computed tomography (CT) scanners has become a significant public health concern. All CT scanners spray x-ray photons across a patient, including those using compressive sensing algorithms. New technologies make it possible to aim x-ray beams where they are most needed to form a diagnostic or screening image. We have designed a computer game, CT Brush, that takes advantage of this new flexibility. It uses a standard MART algorithm (Multiplicative Algebraic Reconstruction Technique), but with a user defined dynamically selected subset of the rays. The image appears as the player moves the CT brush over an initially blank scene, with dose accumulating with every "mouse down" move. The goal is to find the "tumor" with as few moves (least dose) as possible.

RESULTS

We have successfully implemented CT Brush in Java and made it available publicly, requesting crowdsourced feedback on improving the open source code. With this experience, we also outline a "shoot 'em up game" CancerZap! for photon limited CT.

CONCLUSIONS

We anticipate that human computing games like these, analyzed by methods similar to those used to understand eye tracking, will lead to new object dependent CT algorithms that will require significantly less dose than object independent nonlinear and compressive sensing algorithms that depend on sprayed photons. Preliminary results suggest substantial dose reduction is achievable.

摘要

背景

计算机断层扫描(CT)扫描仪产生的X射线剂量已成为一个重大的公共卫生问题。所有CT扫描仪都会向患者全身发射X射线光子,包括那些使用压缩感知算法的扫描仪。新技术使将X射线束对准最需要的地方以形成诊断或筛查图像成为可能。我们设计了一款电脑游戏CT Brush,利用了这种新的灵活性。它使用标准的MART算法(乘法代数重建技术),但射线的子集由用户动态定义并选择。当玩家在初始空白场景上移动CT画笔时图像会显示出来,每次“鼠标按下”移动时剂量都会累积。目标是以尽可能少的移动次数(最低剂量)找到“肿瘤”。

结果

我们已成功用Java实现了CT Brush并将其公开,请求大家对改进开源代码提供众包反馈。有了这段经历,我们还概述了一款用于光子受限CT的“射击游戏”CancerZap!

结论

我们预计,像这样的人类计算游戏,通过类似于用于理解眼动追踪的方法进行分析,将催生新的依赖于物体的CT算法,这些算法所需的剂量将比依赖于散射光子的不依赖于物体的非线性和压缩感知算法少得多。初步结果表明可大幅降低剂量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/364d/4469010/807a14cdff53/12976_2015_3_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验