Suppr超能文献

稀疏梯度域中的自适应字典学习在图像恢复中的应用。

Adaptive dictionary learning in sparse gradient domain for image recovery.

出版信息

IEEE Trans Image Process. 2013 Dec;22(12):4652-63. doi: 10.1109/TIP.2013.2277798. Epub 2013 Aug 15.

Abstract

Image recovery from undersampled data has always been challenging due to its implicit ill-posed nature but becomes fascinating with the emerging compressed sensing (CS) theory. This paper proposes a novel gradient based dictionary learning method for image recovery, which effectively integrates the popular total variation (TV) and dictionary learning technique into the same framework. Specifically, we first train dictionaries from the horizontal and vertical gradients of the image and then reconstruct the desired image using the sparse representations of both derivatives. The proposed method enables local features in the gradient images to be captured effectively, and can be viewed as an adaptive extension of the TV regularization. The results of various experiments on MR images consistently demonstrate that the proposed algorithm efficiently recovers images and presents advantages over the current leading CS reconstruction approaches.

摘要

由于欠采样数据的隐式不适定性,从欠采样数据中恢复图像一直是具有挑战性的,但随着压缩感知(CS)理论的出现,这变得非常有趣。本文提出了一种新的基于梯度的字典学习方法用于图像恢复,它有效地将流行的全变差(TV)和字典学习技术集成到同一个框架中。具体来说,我们首先从图像的水平和垂直梯度中训练字典,然后使用导数的稀疏表示来重建所需的图像。所提出的方法能够有效地捕捉梯度图像中的局部特征,可以看作是 TV 正则化的自适应扩展。在磁共振图像的各种实验结果表明,该算法能够有效地恢复图像,并优于当前领先的 CS 重建方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验