Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, The University of Melbourne, Parkville, Victoria, Australia.
J Med Genet. 2013 Dec;50(12):785-93. doi: 10.1136/jmedgenet-2013-101803. Epub 2013 Aug 16.
One of the strongest predictors of colorectal cancer risk is carrying a germline mutation in a DNA mismatch repair (MMR) gene. Once identified, mutation carriers can be recommended for intensive screening that will substantially reduce their high colorectal cancer risk. Conversely, the relatives of carriers identified as non-carriers can be relieved of the burden of intensive screening. Criteria and prediction models that identify likely mutation carriers are needed for cost-effective, targeted, germline testing for MMR gene mutation. We reviewed 12 criteria/guidelines and 8 prediction models (Leiden, Amsterdam-plus, Amsterdam-alternative, MMRpro, PREMM1,2,6, MMRpredict, Associazione Italiana per lo studio della Familiarità ed Ereditarietà dei tumori Gastrointestinali (AIFEG) and the Myriad Genetics Prevalence table) for identifying mutation carriers. While criteria are only used to identify individuals with colorectal cancer (yes/no for screening followed by germline testing), all prediction models except MMRpredict and Myriad tables can predict the probability of carrying mutations for individuals with or without colorectal cancer. We conducted a meta-analysis of the discrimination performance of 17 studies that validated the prediction models. The pooled estimate for the area under curve was 0.80 (95% CI 0.72 to 0.88) for MMRpro, 0.81 (95% CI 0.73 to 0.88) for MMRpredict, 0.84 (95% CI 0.81 to 0.88) for PREMM, and 0.85 (95% CI 0.78 to 0.91) for Leiden model. Given the high degree of overlap in the CIs, we cannot state that one model has a higher discrimination than any of the others. Overall, the existing statistical models have been shown to be sensitive and specific (at a 5% cut-off) in predicting MMR gene mutation carriers. Future models may need to: provide prediction of PMS2 mutations, take into account a wider range of Lynch syndrome-associated cancers when assessing family history, and be applicable to all people irrespective of any cancer diagnosis.
结直肠癌风险最强的预测因素之一是携带 DNA 错配修复 (MMR) 基因的种系突变。一旦确定,突变携带者可以被推荐进行强化筛查,这将大大降低他们患结直肠癌的高风险。相反,携带者的亲属如果被确定为非携带者,可以免除强化筛查的负担。需要有成本效益、有针对性的、针对 MMR 基因突变的种系检测的标准和预测模型,来识别可能的突变携带者。我们回顾了 12 个标准/指南和 8 个预测模型(莱顿、阿姆斯特丹-plus、阿姆斯特丹替代、MMRpro、PREMM1、2、6、MMRpredict、意大利胃肠道肿瘤家族性和遗传性研究协会 (AIFEG) 和 Myriad Genetics 患病率表),用于识别突变携带者。虽然标准仅用于识别结直肠癌患者(是否进行筛查,然后进行种系检测),但除了 MMRpredict 和 Myriad 表之外,所有预测模型都可以预测有或没有结直肠癌患者携带突变的概率。我们对 17 项验证预测模型的区分性能的研究进行了荟萃分析。MMRpro 的曲线下面积的合并估计值为 0.80(95%CI 0.72 至 0.88),MMRpredict 为 0.81(95%CI 0.73 至 0.88),PREMM 为 0.84(95%CI 0.81 至 0.88),莱顿模型为 0.85(95%CI 0.78 至 0.91)。鉴于置信区间有很大的重叠,我们不能说一个模型的区分能力高于任何其他模型。总的来说,现有的统计模型在预测 MMR 基因突变携带者方面已被证明具有较高的敏感性和特异性(在 5%的截止值)。未来的模型可能需要:预测 PMS2 突变,在评估家族史时考虑更广泛的林奇综合征相关癌症,以及适用于所有人群,而不论其是否患有任何癌症。