Suppr超能文献

林奇综合征综合风险评估PREMM模型的开发与验证

Development and Validation of the PREMM Model for Comprehensive Risk Assessment of Lynch Syndrome.

作者信息

Kastrinos Fay, Uno Hajime, Ukaegbu Chinedu, Alvero Carmelita, McFarland Ashley, Yurgelun Matthew B, Kulke Matthew H, Schrag Deborah, Meyerhardt Jeffrey A, Fuchs Charles S, Mayer Robert J, Ng Kimmie, Steyerberg Ewout W, Syngal Sapna

机构信息

Fay Kastrinos and Ashley McFarland, Columbia University Medical Center, New York, NY; Hajime Uno, Chinedu Ukaegbu, Matthew B. Yurgelun, Matthew H. Kulke, Deborah Schrag, Jeffrey A. Meyerhardt, Charles S. Fuchs, Robert J. Mayer, Kimmie Ng, and Sapna Syngal, Dana-Farber Cancer Institute; Carmelita Alvero, Harvard T.H. Chan School of Public Health; Matthew B. Yurgelun, Matthew H. Kulke, Deborah Schrag, Jeffrey A. Meyerhardt, Charles S. Fuchs, Robert J. Mayer, Kimmie Ng, and Sapna Syngal, Harvard Medical School; Sapna Syngal, Brigham and Women's Hospital, Boston, MA; and Ewout W. Steyerberg, University Medical Center Rotterdam, Rotterdam, the Netherlands.

出版信息

J Clin Oncol. 2017 Jul 1;35(19):2165-2172. doi: 10.1200/JCO.2016.69.6120. Epub 2017 May 10.

Abstract

Purpose Current Lynch syndrome (LS) prediction models quantify the risk to an individual of carrying a pathogenic germline mutation in three mismatch repair (MMR) genes: MLH1, MSH2, and MSH6. We developed a new prediction model, PREMM, that incorporates the genes PMS2 and EPCAM to provide comprehensive LS risk assessment. Patients and Methods PREMM was developed to predict the likelihood of a mutation in any of the LS genes by using polytomous logistic regression analysis of clinical and germline data from 18,734 individuals who were tested for all five genes. Predictors of mutation status included sex, age at genetic testing, and proband and family cancer histories. Discrimination was evaluated by the area under the receiver operating characteristic curve (AUC), and clinical impact was determined by decision curve analysis; comparisons were made to the existing PREMM model. External validation of PREMM was performed in a clinic-based cohort of 1,058 patients with colorectal cancer. Results Pathogenic mutations were detected in 1,000 (5%) of 18,734 patients in the development cohort; mutations included MLH1 (n = 306), MSH2 (n = 354), MSH6 (n = 177), PMS2 (n = 141), and EPCAM (n = 22). PREMM distinguished carriers from noncarriers with an AUC of 0.81 (95% CI, 0.79 to 0.82), and performance was similar in the validation cohort (AUC, 0.83; 95% CI, 0.75 to 0.92). Prediction was more difficult for PMS2 mutations (AUC, 0.64; 95% CI, 0.60 to 0.68) than for other genes. Performance characteristics of PREMM exceeded those of PREMM. Decision curve analysis supported germline LS testing for PREMM scores ≥ 2.5%. Conclusion PREMM provides comprehensive risk estimation of all five LS genes and supports LS genetic testing for individuals with scores ≥ 2.5%. At this threshold, PREMM provides performance that is superior to the existing PREMM model in the identification of carriers of LS, including those with weaker phenotypes and individuals unaffected by cancer.

摘要

目的 目前的林奇综合征(LS)预测模型可量化个体携带错配修复(MMR)三个基因(MLH1、MSH2和MSH6)致病种系突变的风险。我们开发了一种新的预测模型PREMM,该模型纳入了PMS2和EPCAM基因,以提供全面的LS风险评估。

患者与方法 通过对18734名对所有五个基因进行检测的个体的临床和种系数据进行多分类逻辑回归分析,开发PREMM以预测任何一个LS基因发生突变的可能性。突变状态的预测因素包括性别、基因检测时的年龄、先证者和家族癌症病史。通过受试者操作特征曲线(AUC)下的面积评估辨别能力,并通过决策曲线分析确定临床影响;与现有的PREMM模型进行比较。在一个基于诊所的1058例结直肠癌患者队列中对PREMM进行外部验证。

结果 在开发队列的18734例患者中,有1000例(5%)检测到致病突变;突变包括MLH1(n = 306)、MSH2(n = 354)、MSH6(n = 177)、PMS2(n = 141)和EPCAM(n = 22)。PREMM区分携带者与非携带者的AUC为0.81(95%CI,0.79至0.82),在验证队列中的表现相似(AUC,0.83;95%CI,0.75至0.92)。PMS2突变的预测比其他基因更困难(AUC,0.64;95%CI,0.60至0.68)。PREMM的性能特征超过了PREMM。决策曲线分析支持对PREMM评分≥2.5%的个体进行种系LS检测。

结论 PREMM提供了所有五个LS基因的全面风险估计,并支持对评分≥2.5%的个体进行LS基因检测。在此阈值下,PREMM在识别LS携带者方面的表现优于现有的PREMM模型,包括那些表型较弱和未受癌症影响的个体。

相似文献

1
Development and Validation of the PREMM Model for Comprehensive Risk Assessment of Lynch Syndrome.
J Clin Oncol. 2017 Jul 1;35(19):2165-2172. doi: 10.1200/JCO.2016.69.6120. Epub 2017 May 10.
4
Multigene Panel Testing Provides a New Perspective on Lynch Syndrome.
J Clin Oncol. 2017 Aug 1;35(22):2568-2575. doi: 10.1200/JCO.2016.71.9260. Epub 2017 May 17.
7
Comparison of Prediction Models for Lynch Syndrome Among Individuals With Colorectal Cancer.
J Natl Cancer Inst. 2015 Nov 18;108(2). doi: 10.1093/jnci/djv308. Print 2016 Feb.
10
Cancer Susceptibility Gene Mutations in Individuals With Colorectal Cancer.
J Clin Oncol. 2017 Apr 1;35(10):1086-1095. doi: 10.1200/JCO.2016.71.0012. Epub 2017 Jan 30.

引用本文的文献

2
Clinical Implications of Mismatch Repair Deficiency in Pancreatic Ductal Adenocarcinoma.
Cancer Med. 2025 May;14(10):e70960. doi: 10.1002/cam4.70960.
4
Genomic Landscapes of Early-Onset Versus Average-Onset Colorectal Cancer Populations.
Cancers (Basel). 2025 Feb 28;17(5):836. doi: 10.3390/cancers17050836.
6
Comparison of PREMM5 and PREMMplus Risk Assessment Models to Identify Lynch Syndrome.
JCO Precis Oncol. 2025 Jan;9:e2400691. doi: 10.1200/PO-24-00691. Epub 2025 Jan 7.
7
Gynecological Insights into Lynch Syndrome-A Comprehensive Review of Cancer Screening and Prevention.
Medicina (Kaunas). 2024 Dec 6;60(12):2013. doi: 10.3390/medicina60122013.
8
Feasibility of an electronic patient-facing cancer family history tool in medically underserved populations.
Genet Med Open. 2024 Jun 25;2:101860. doi: 10.1016/j.gimo.2024.101860. eCollection 2024.
9
Validation of a guidelines-based digital tool to assess the need for germline cancer genetic testing.
Hered Cancer Clin Pract. 2024 Nov 8;22(1):24. doi: 10.1186/s13053-024-00298-0.
10
Lynch syndrome screening in patients with young-onset extra-colorectal Lynch syndrome-associated cancers.
Int J Clin Oncol. 2024 Nov;29(11):1696-1703. doi: 10.1007/s10147-024-02609-w. Epub 2024 Aug 26.

本文引用的文献

1
Prevalence and Penetrance of Major Genes and Polygenes for Colorectal Cancer.
Cancer Epidemiol Biomarkers Prev. 2017 Mar;26(3):404-412. doi: 10.1158/1055-9965.EPI-16-0693. Epub 2016 Oct 31.
2
Comparison of Prediction Models for Lynch Syndrome Among Individuals With Colorectal Cancer.
J Natl Cancer Inst. 2015 Nov 18;108(2). doi: 10.1093/jnci/djv308. Print 2016 Feb.
4
Aspirin, Ibuprofen, and the Risk of Colorectal Cancer in Lynch Syndrome.
J Natl Cancer Inst. 2015 Jun 24;107(9). doi: 10.1093/jnci/djv170. Print 2015 Sep.
5
Identification of a Variety of Mutations in Cancer Predisposition Genes in Patients With Suspected Lynch Syndrome.
Gastroenterology. 2015 Sep;149(3):604-13.e20. doi: 10.1053/j.gastro.2015.05.006. Epub 2015 May 14.
6
ACG clinical guideline: Genetic testing and management of hereditary gastrointestinal cancer syndromes.
Am J Gastroenterol. 2015 Feb;110(2):223-62; quiz 263. doi: 10.1038/ajg.2014.435. Epub 2015 Feb 3.
8
Towards better clinical prediction models: seven steps for development and an ABCD for validation.
Eur Heart J. 2014 Aug 1;35(29):1925-31. doi: 10.1093/eurheartj/ehu207. Epub 2014 Jun 4.
9
Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers.
Stat Med. 2014 Feb 10;33(3):517-35. doi: 10.1002/sim.5941. Epub 2013 Aug 23.
10
Criteria and prediction models for mismatch repair gene mutations: a review.
J Med Genet. 2013 Dec;50(12):785-93. doi: 10.1136/jmedgenet-2013-101803. Epub 2013 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验