Suppr超能文献

林奇综合征当前预测模型的评估:更新PREMM5模型以识别PMS2突变携带者。

Evaluation of current prediction models for Lynch syndrome: updating the PREMM5 model to identify PMS2 mutation carriers.

作者信息

Goverde A, Spaander M C W, Nieboer D, van den Ouweland A M W, Dinjens W N M, Dubbink H J, Tops C J, Ten Broeke S W, Bruno M J, Hofstra R M W, Steyerberg E W, Wagner A

机构信息

Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.

Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.

出版信息

Fam Cancer. 2018 Jul;17(3):361-370. doi: 10.1007/s10689-017-0039-1.

Abstract

Until recently, no prediction models for Lynch syndrome (LS) had been validated for PMS2 mutation carriers. We aimed to evaluate MMRpredict and PREMM5 in a clinical cohort and for PMS2 mutation carriers specifically. In a retrospective, clinic-based cohort we calculated predictions for LS according to MMRpredict and PREMM5. The area under the operator receiving characteristic curve (AUC) was compared between MMRpredict and PREMM5 for LS patients in general and for different LS genes specifically. Of 734 index patients, 83 (11%) were diagnosed with LS; 23 MLH1, 17 MSH2, 31 MSH6 and 12 PMS2 mutation carriers. Both prediction models performed well for MLH1 and MSH2 (AUC 0.80 and 0.83 for PREMM5 and 0.79 for MMRpredict) and fair for MSH6 mutation carriers (0.69 for PREMM5 and 0.66 for MMRpredict). MMRpredict performed fair for PMS2 mutation carriers (AUC 0.72), while PREMM5 failed to discriminate PMS2 mutation carriers from non-mutation carriers (AUC 0.51). The only statistically significant difference between PMS2 mutation carriers and non-mutation carriers was proximal location of colorectal cancer (77 vs. 28%, p < 0.001). Adding location of colorectal cancer to PREMM5 considerably improved the models performance for PMS2 mutation carriers (AUC 0.77) and overall (AUC 0.81 vs. 0.72). We validated these results in an external cohort of 376 colorectal cancer patients, including 158 LS patients. MMRpredict and PREMM5 cannot adequately identify PMS2 mutation carriers. Adding location of colorectal cancer to PREMM5 may improve the performance of this model, which should be validated in larger cohorts.

摘要

直到最近,还没有针对林奇综合征(LS)的预测模型在PMS2突变携带者中得到验证。我们旨在评估临床队列中的MMRpredict和PREMM5,特别是针对PMS2突变携带者。在一个基于临床的回顾性队列中,我们根据MMRpredict和PREMM5计算了LS的预测值。比较了MMRpredict和PREMM5在总体LS患者以及不同LS基因患者中的受试者工作特征曲线下面积(AUC)。在734例索引患者中,83例(11%)被诊断为LS;23例为MLH1突变携带者,17例为MSH2突变携带者,31例为MSH6突变携带者,12例为PMS2突变携带者。两种预测模型对MLH1和MSH2突变携带者的预测效果良好(PREMM5的AUC为0.80和0.83,MMRpredict的AUC为0.79),对MSH6突变携带者的预测效果一般(PREMM5的AUC为0.69,MMRpredict的AUC为0.66)。MMRpredict对PMS2突变携带者的预测效果一般(AUC为0.72),而PREMM5无法区分PMS2突变携带者和非突变携带者(AUC为0.51)。PMS2突变携带者与非突变携带者之间唯一具有统计学意义的差异是结直肠癌的近端位置(77%对28%,p < 0.001)。将结直肠癌位置添加到PREMM5中,可显著提高该模型对PMS2突变携带者的预测性能(AUC为0.77)以及总体预测性能(AUC为0.81对0.72)。我们在一个由376例结直肠癌患者组成的外部队列中验证了这些结果,其中包括158例LS患者。MMRpredict和PREMM5无法充分识别PMS2突变携带者。将结直肠癌位置添加到PREMM5中可能会提高该模型的性能,这需要在更大的队列中进行验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验