School of Electrical Engineering and Computer Science, Queen Mary University of London.
Cogn Sci. 2013 Nov-Dec;37(8):1426-70. doi: 10.1111/cogs.12073. Epub 2013 Aug 19.
How do human infants learn the causal dependencies between events? Evidence suggests that this remarkable feat can be achieved by observation of only a handful of examples. Many computational models have been produced to explain how infants perform causal inference without explicit teaching about statistics or the scientific method. Here, we propose a spiking neuronal network implementation that can be entrained to form a dynamical model of the temporal and causal relationships between events that it observes. The network uses spike-time dependent plasticity, long-term depression, and heterosynaptic competition rules to implement Rescorla-Wagner-like learning. Transmission delays between neurons allow the network to learn a forward model of the temporal relationships between events. Within this framework, biologically realistic synaptic plasticity rules account for well-known behavioral data regarding cognitive causal assumptions such as backwards blocking and screening-off. These models can then be run as emulators for state inference. Furthermore, this mechanism is capable of copying synaptic connectivity patterns between neuronal networks by observing the spontaneous spike activity from the neuronal circuit that is to be copied, and it thereby provides a powerful method for transmission of circuit functionality between brain regions.
人类婴儿是如何学习事件之间的因果关系的?有证据表明,通过观察少数几个例子,就可以完成这一非凡的壮举。已经有许多计算模型被提出,以解释婴儿如何在没有关于统计学或科学方法的明确教学的情况下进行因果推理。在这里,我们提出了一个尖峰神经元网络实现,可以被训练成形成它所观察到的事件之间的时间和因果关系的动态模型。该网络使用基于尖峰时间的可塑性、长时程抑制和异突触竞争规则来实现类似于 Rescorla-Wagner 的学习。神经元之间的传输延迟允许网络学习事件之间时间关系的前向模型。在这个框架内,生物上现实的突触可塑性规则可以解释关于认知因果假设的众所周知的行为数据,例如回溯阻断和屏蔽。这些模型可以作为状态推断的仿真器运行。此外,该机制通过观察要复制的神经元电路的自发尖峰活动,能够复制神经元网络之间的突触连接模式,从而为大脑区域之间的电路功能传输提供了一种强大的方法。