Laboratori de Química Orgànica, Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona , 08028-Barcelona, Spain.
Acc Chem Res. 2014 Jan 21;47(1):168-79. doi: 10.1021/ar400104j. Epub 2013 Aug 19.
The reactivity of main group organometallics, such as organolithium compounds (RLi) and Grignard reagents (RMgX), is quite straightforward. In these species the R group usually exhibits nucleophilic reactivity without any possibility of inducing electrophilic character. In contrast, in organopalladium complexes, researchers can switch the reactivity from electrophilic to nucleophilic relatively simply. Although σ-aryl and σ-vinylpalladium complexes are commonly used as electrophiles in C-C bond-forming reactions, recent research has demonstrated that they can also react with carbon-heteroatom multiple bonds in a nucleophilic manner. Nevertheless, researchers have completely ignored the issue of controlling the ambiphilic nature of such species. This Account describes our efforts toward selectively promoting the same starting materials toward either electrophilic α-arylation or nucleophilic addition reactions to different carbonyl groups. We could tune the properties of the σ-arylpalladium intermediates derived from amino-tethered aryl halides and carbonyl compounds to achieve chemoselective transformations. Therefore, chemists can control the ambiphilic nature of such intermediates and, consequently, the competition between the alternative reaction pathways by the adequate selection of the reaction conditions and additives (base, presence/absence of phenol, bidentate phosphines). The nature of the carbonyl group (aldehydes, ketones, esters, and amides) and the length of the tether connecting it to the aniline moiety also play an important role in the outcome of these processes. Our joint computational and experimental efforts to elucidate the reaction mechanism of these palladium-catalyzed transformations suggest that beyond the formation of the four-membered azapalladacycle, two major factors help to control the dual character of the palladium(II) intermediates derived from 2-haloanilines. First, their high nucleophilicity strongly modifies the interaction of the metal center with the carbonyl group. Second, the additive phenol exchanges the iodide ligand to give an arylpalladium(II) phenoxide complex, which has a beneficial effect on the arylation. The formation of this transient intermediate not only stabilizes the arylpalladium moiety, thus preventing the nucleophilic attack at the carbonyl group, but also assists the enolization reaction, which takes place in a more favorable intramolecular manner. The azapalladacycle intermediate is, in the words of J. R. R. Tolkien, "the one ring to bring them all and in the darkness to bind them." With this intermediate, we can easily achieve the synthesis of a variety of heterocyclic systems by selectively promoting electrophilic α-arylation or nucleophilic addition reactions from the same precursors.
主族有机金属化合物的反应性,如有机锂化合物(RLi)和格氏试剂(RMgX),是相当直接的。在这些物种中,R 基团通常表现出亲核反应性,而没有任何诱导亲电性的可能性。相比之下,在有机钯配合物中,研究人员可以相对简单地将反应性从亲电性切换到亲核性。尽管σ-芳基和σ-乙烯基钯配合物通常用作 C-C 键形成反应中的亲电试剂,但最近的研究表明,它们也可以以亲核方式与碳-杂原子多重键反应。然而,研究人员完全忽略了控制此类物种两性性质的问题。本账户描述了我们努力选择性地促进相同的起始材料向不同羰基的亲电性α-芳基化或亲核加成反应。我们可以调节衍生自氨基键合芳基卤化物和羰基化合物的σ-芳基钯中间体的性质,以实现选择性转化。因此,化学家可以通过适当选择反应条件和添加剂(碱、酚的存在/不存在、双齿膦)来控制此类中间体的两性性质,从而控制替代反应途径之间的竞争。羰基的性质(醛、酮、酯和酰胺)以及将其连接到苯胺部分的键的长度在这些过程的结果中也起着重要作用。我们联合进行的计算和实验努力阐明这些钯催化转化的反应机制表明,除了形成四元氮杂钯环外,两个主要因素有助于控制衍生自 2-卤代苯胺的钯(II)中间体的双重性质。首先,它们的高亲核性强烈改变了金属中心与羰基的相互作用。其次,添加剂苯酚将碘化物配体交换为芳基钯(II)酚盐配合物,这对芳基化反应有利。这种瞬态中间体的形成不仅稳定了芳基钯部分,从而防止了羰基的亲核攻击,而且还有助于烯醇化反应以更有利的分子内方式进行。正如 J.R.R.托尔金所说,氮杂钯环“将它们全部聚集在一起,并将它们束缚在黑暗中”。有了这个中间体,我们可以很容易地通过从相同的前体制备物中选择性促进亲电性α-芳基化或亲核加成反应来合成各种杂环系统。