Suppr超能文献

体外膜肺氧合后心肌再负荷改变了底物代谢,同时促进了蛋白质合成。

Myocardial reloading after extracorporeal membrane oxygenation alters substrate metabolism while promoting protein synthesis.

机构信息

Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA.

出版信息

J Am Heart Assoc. 2013 Aug 19;2(4):e000106. doi: 10.1161/JAHA.113.000106.

Abstract

BACKGROUND

Extracorporeal membrane oxygenation (ECMO) unloads the heart, providing a bridge to recovery in children after myocardial stunning. ECMO also induces stress which can adversely affect the ability to reload or wean the heart from the circuit. Metabolic impairments induced by altered loading and/or stress conditions may impact weaning. However, cardiac substrate and amino acid requirements upon weaning are unknown. We assessed the hypothesis that ventricular reloading with ECMO modulates both substrate entry into the citric acid cycle (CAC) and myocardial protein synthesis.

METHODS AND RESULTS

Sixteen immature piglets (7.8 to 15.6 kg) were separated into 2 groups based on ventricular loading status: 8-hour ECMO (UNLOAD) and postwean from ECMO (RELOAD). We infused into the coronary artery [2-(13)C]-pyruvate as an oxidative substrate and [(13)C6]-L-leucine as an indicator for amino acid oxidation and protein synthesis. Upon RELOAD, each functional parameter, which were decreased substantially by ECMO, recovered to near-baseline level with the exclusion of minimum dP/dt. Accordingly, myocardial oxygen consumption was also increased, indicating that overall mitochondrial metabolism was reestablished. At the metabolic level, when compared to UNLOAD, RELOAD altered the contribution of various substrates/pathways to tissue pyruvate formation, favoring exogenous pyruvate versus glycolysis, and acetyl-CoA formation, shifting away from pyruvate decarboxylation to endogenous substrate, presumably fatty acids. Furthermore, there was also a significant increase of tissue concentrations for all CAC intermediates (≈80%), suggesting enhanced anaplerosis, and of fractional protein synthesis rates (>70%).

CONCLUSIONS

RELOAD alters both cytosolic and mitochondrial energy substrate metabolism, while favoring leucine incorporation into protein synthesis rather than oxidation in the CAC. Improved understanding of factors governing these metabolic perturbations may serve as a basis for interventions and thereby improve success rate from weaning from ECMO.

摘要

背景

体外膜肺氧合(ECMO)可减轻心脏负担,为心肌顿抑后儿童的恢复提供桥梁。ECMO 还会引起应激,从而对心脏从回路中重新加载或脱机的能力产生不利影响。改变负荷和/或应激条件引起的代谢损伤可能会影响脱机。然而,脱机时心脏底物和氨基酸的需求尚不清楚。我们评估了这样一个假设,即 ECMO 心室再加载会调节基质进入柠檬酸循环(CAC)和心肌蛋白合成。

方法和结果

16 只幼猪(7.8 至 15.6 公斤)根据心室加载状态分为 2 组:ECMO 8 小时(UNLOAD)和 ECMO 脱机后(RELOAD)。我们将[2-(13)C]-丙酮酸注入冠状动脉作为氧化底物,将[(13)C6]-L-亮氨酸注入冠状动脉作为氨基酸氧化和蛋白质合成的指示剂。在 RELOAD 时,除最小 dP/dt 外,ECMO 大大降低的每个功能参数均恢复到接近基线水平。因此,心肌耗氧量也增加,表明整体线粒体代谢得到重建。在代谢水平上,与 UNLOAD 相比,RELOAD 改变了各种底物/途径对组织丙酮酸形成的贡献,有利于外源性丙酮酸而不是糖酵解和乙酰辅酶 A 的形成,从丙酮酸脱羧转移到内源性底物,可能是脂肪酸。此外,所有 CAC 中间产物的组织浓度也显著增加(≈80%),表明增强了氨酰基供体,以及蛋白质合成率的分数增加(>70%)。

结论

RELOAD 改变了细胞质和线粒体能量底物代谢,同时有利于亮氨酸掺入蛋白质合成而不是 CAC 中的氧化。更好地了解控制这些代谢紊乱的因素可以作为干预的基础,从而提高从 ECMO 脱机的成功率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0c0/3828804/f0ef00c682df/jah3-2-e000106-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验