Suppr超能文献

利用初级保健数据预测急诊住院风险:QAdmissions 评分的推导和验证。

Predicting risk of emergency admission to hospital using primary care data: derivation and validation of QAdmissions score.

机构信息

Division of Primary Care, University of Nottingham, Nottingham, UK.

出版信息

BMJ Open. 2013 Aug 19;3(8):e003482. doi: 10.1136/bmjopen-2013-003482.

Abstract

OBJECTIVE

To develop and externally validate a risk algorithm (QAdmissions) to estimate the risk of emergency hospital admission for patients aged 18-100 years in primary care.

DESIGN

Prospective open cohort study using routinely collected data from general practice linked to hospital episode data during the 2-year study period 1 January 2010 to 31 December 2011.

SETTING

405 general practices in England contributing to the national QResearch database to develop the algorithm. Two validation cohorts to validate the algorithm (1) 202 different QResearch practices and (2) 343 practices in England contributing to the Clinical Practice Research DataLink (CPRD). All general practices had data linked to hospital episode statistics at the individual patient level.

PARTICIPANTS

We studied 2 849 381 patients aged 18-100 years in the derivation cohort with over 4.6 million person-years of follow-up. 265 573 of these patients had one or more emergency admissions during follow-up. For the QResearch validation cohort, we identified 1 340 622 patients aged 18-100 years with over 2.2 million person-years of follow-up. Of these patients, 132 723 had one or more emergency admissions during follow-up. The CPRD cohort included 2 475 360 patients aged 18-100 years with over 3.8 million person-years of follow-up. 234 204 of these patients had one or more emergency admissions during follow-up. We excluded patients without a valid NHS number and a valid Townsend score.

ENDPOINT

First (ie, incident) emergency admission to hospital in the next 2 years as recorded on the linked hospital episodes records.

RISK FACTORS

Candidate variables recorded on the general practitioner computer system including (1) demographic variables (age, sex, strategic health authority, Townsend deprivation score, ethnicity); (2) lifestyle variables (smoking, alcohol intake); (3) chronic diseases; (4) prescribed medication; (5) clinical values (body mass index, systolic blood pressure); (6) laboratory test results (haemoglobin, platelets, erythrocyte sedimentation rate, ratio of total serum cholesterol to high density lipoprotein cholesterol concentrations, liver function tests). We also included the number of emergency admissions in the preceding year based on information recorded on the linked hospital episodes records.

RESULTS

The final QAdmissions algorithm incorporated 30 variables. When applied to the QResearch validation cohort, it explained 41% of the variation in women and 43% of that in men. The D statistic for QAdmissions was 1.7 in women and 1.8 in men. The receiver operating curve statistic was 0.78 for men and 0.77 for women. QAdmissions had good performance on all measures of discrimination and calibration. The positive predictive value for emergency admissions for the top tenth of patients at highest risk was 42% and the sensitivity was 39%. The results for the CPRD validation cohort were similar.

CONCLUSIONS

The QAdmissions model provided a valid measure of absolute risk of emergency admission to hospital in the general population as shown by its performance in a separate validation cohort. Further research is needed to evaluate the cost-effectiveness of using these algorithms in primary care.

摘要

目的

开发并外部验证一种风险算法(QAdmissions),以估计 18-100 岁的初级保健患者急诊入院的风险。

设计

使用常规收集的数据进行前瞻性开放队列研究,这些数据来自于参与研究期间(2010 年 1 月 1 日至 2011 年 12 月 31 日)的国家 QResearch 数据库的普通实践,同时与医院入院数据相关联。

设置

来自英格兰的 405 家普通实践参与了 QResearch 算法的开发。两个验证队列用于验证算法:(1)202 家不同的 QResearch 实践,(2)343 家参与临床实践研究数据链接(CPRD)的实践。所有的普通实践都有与个体患者水平的医院入院统计数据相关联的数据。

参与者

我们研究了来自推导队列的 2849381 名 18-100 岁的患者,随访时间超过 460 万人年。这些患者中有超过 460 万人年的随访时间,其中 265573 人在随访期间有一次或多次急诊入院。对于 QResearch 验证队列,我们确定了 1340622 名 18-100 岁的患者,随访时间超过 220 万人年。这些患者中有 132723 人在随访期间有一次或多次急诊入院。CPRD 队列包括 2475360 名 18-100 岁的患者,随访时间超过 380 万人年。这些患者中有 234204 人在随访期间有一次或多次急诊入院。我们排除了没有有效 NHS 号码和有效城镇人口贫困分数的患者。

终点

在接下来的 2 年内首次(即首发)急诊入院到医院的记录。

风险因素

在普通医生电脑系统中记录的候选变量,包括(1)人口统计学变量(年龄、性别、战略卫生当局、城镇人口贫困分数、种族);(2)生活方式变量(吸烟、饮酒);(3)慢性疾病;(4)处方药物;(5)临床值(体重指数、收缩压);(6)实验室测试结果(血红蛋白、血小板、红细胞沉降率、总血清胆固醇与高密度脂蛋白胆固醇浓度比、肝功能测试)。我们还包括了根据链接的医院入院记录中记录的信息,前一年的急诊入院次数。

结果

最终的 QAdmissions 算法纳入了 30 个变量。当应用于 QResearch 验证队列时,它解释了女性患者变异的 41%和男性患者变异的 43%。QAdmissions 的 D 统计量在女性中为 1.7,在男性中为 1.8。男性的接收者操作曲线统计量为 0.78,女性为 0.77。QAdmissions 在所有衡量歧视和校准的指标上都表现良好。风险最高的前十分位数患者的急诊入院的阳性预测值为 42%,敏感性为 39%。CPRD 验证队列的结果类似。

结论

QAdmissions 模型在单独的验证队列中表现良好,为急诊入院的绝对风险提供了有效的衡量标准。需要进一步研究这些算法在初级保健中的成本效益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce28/3753502/6d5267c48742/bmjopen2013003482f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验