Suppr超能文献

降低原肌球蛋白磷酸化可挽救原肌球蛋白诱导的家族性肥厚型心肌病。

Decreasing tropomyosin phosphorylation rescues tropomyosin-induced familial hypertrophic cardiomyopathy.

机构信息

From the Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267.

出版信息

J Biol Chem. 2013 Oct 4;288(40):28925-35. doi: 10.1074/jbc.M113.466466. Epub 2013 Aug 19.

Abstract

Studies indicate that tropomyosin (Tm) phosphorylation status varies in different mouse models of cardiac disease. Investigation of basal and acute cardiac function utilizing a mouse model expressing an α-Tm protein that cannot be phosphorylated (S283A) shows a compensated hypertrophic phenotype with significant increases in SERCA2a expression and phosphorylation of phospholamban Ser-16 (Schulz, E. M., Correll, R. N., Sheikh, H. N., Lofrano-Alves, M. S., Engel, P. L., Newman, G., Schultz Jel, J., Molkentin, J. D., Wolska, B. M., Solaro, R. J., and Wieczorek, D. F. (2012) J. Biol. Chem. 287, 44478-44489). With these results, we hypothesized that decreasing α-Tm phosphorylation may be beneficial in the context of a chronic, intrinsic stressor. To test this hypothesis, we utilized the familial hypertrophic cardiomyopathy (FHC) α-Tm E180G model (Prabhakar, R., Boivin, G. P., Grupp, I. L., Hoit, B., Arteaga, G., Solaro, R. J., and Wieczorek, D. F. (2001) J. Mol. Cell. Cardiol. 33, 1815-1828). These FHC hearts are characterized by increased heart:body weight ratios, fibrosis, increased myofilament Ca(2+) sensitivity, and contractile defects. The FHC mice die by 6-8 months of age. We generated mice expressing both the E180G and S283A mutations and found that the hypertrophic phenotype was rescued in the α-Tm E180G/S283A double mutant transgenic animals; these mice exhibited no signs of cardiac hypertrophy and displayed improved cardiac function. These double mutant transgenic hearts showed increased phosphorylation of phospholamban Ser-16 and Thr-17 compared with the α-Tm E180G mice. This is the first study to demonstrate that decreasing phosphorylation of tropomyosin can rescue a hypertrophic cardiomyopathic phenotype.

摘要

研究表明,原肌球蛋白(Tm)的磷酸化状态在不同的心脏疾病小鼠模型中有所不同。利用一种表达不能被磷酸化的α-Tm 蛋白(S283A)的小鼠模型研究基础和急性心脏功能,显示出一种代偿性肥厚表型,肌浆网 Ca2+-ATP 酶 2a(SERCA2a)表达显著增加,磷蛋白 Ser-16 磷酸化(Schulz, E. M., Correll, R. N., Sheikh, H. N., Lofrano-Alves, M. S., Engel, P. L., Newman, G., Schultz Jel, J., Molkentin, J. D., Wolska, B. M., Solaro, R. J., and Wieczorek, D. F. (2012) J. Biol. Chem. 287, 44478-44489)。有了这些结果,我们假设降低α-Tm 的磷酸化可能对慢性内在应激有好处。为了验证这一假设,我们利用家族性肥厚型心肌病(FHC)α-Tm E180G 模型(Prabhakar, R., Boivin, G. P., Grupp, I. L., Hoit, B., Arteaga, G., Solaro, R. J., and Wieczorek, D. F. (2001) J. Mol. Cell. Cardiol. 33, 1815-1828)。这些 FHC 心脏的特点是心脏重量与体重的比值增加、纤维化、肌球蛋白钙敏感性增加和收缩功能缺陷。FHC 小鼠在 6-8 个月大时死亡。我们生成了同时表达 E180G 和 S283A 突变的小鼠,发现α-Tm E180G/S283A 双突变转基因动物的肥厚表型得到了挽救;这些小鼠没有出现心脏肥大的迹象,并表现出心脏功能的改善。这些双突变转基因心脏的磷蛋白 Ser-16 和 Thr-17 的磷酸化水平与α-Tm E180G 小鼠相比有所增加。这是第一项表明降低原肌球蛋白磷酸化可以挽救肥厚型心肌病表型的研究。

相似文献

1
Decreasing tropomyosin phosphorylation rescues tropomyosin-induced familial hypertrophic cardiomyopathy.
J Biol Chem. 2013 Oct 4;288(40):28925-35. doi: 10.1074/jbc.M113.466466. Epub 2013 Aug 19.
3
Rescue of tropomyosin-induced familial hypertrophic cardiomyopathy mice by transgenesis.
Am J Physiol Heart Circ Physiol. 2007 Aug;293(2):H949-58. doi: 10.1152/ajpheart.01341.2006. Epub 2007 Apr 6.
4
N-acetylcysteine reverses diastolic dysfunction and hypertrophy in familial hypertrophic cardiomyopathy.
Am J Physiol Heart Circ Physiol. 2015 Nov 15;309(10):H1720-30. doi: 10.1152/ajpheart.00339.2015. Epub 2015 Oct 2.
5
Functional effects of a tropomyosin mutation linked to FHC contribute to maladaptation during acidosis.
J Mol Cell Cardiol. 2011 Mar;50(3):442-50. doi: 10.1016/j.yjmcc.2010.10.032. Epub 2010 Nov 1.
8
Tropomyosin dephosphorylation results in compensated cardiac hypertrophy.
J Biol Chem. 2012 Dec 28;287(53):44478-89. doi: 10.1074/jbc.M112.402040. Epub 2012 Nov 12.
9
Desensitization of myofilaments to Ca2+ as a therapeutic target for hypertrophic cardiomyopathy with mutations in thin filament proteins.
Circ Cardiovasc Genet. 2014 Apr;7(2):132-143. doi: 10.1161/CIRCGENETICS.113.000324. Epub 2014 Feb 28.
10
Diastolic dysfunction in familial hypertrophic cardiomyopathy transgenic model mice.
Cardiovasc Res. 2009 Apr 1;82(1):84-92. doi: 10.1093/cvr/cvp016. Epub 2009 Jan 15.

引用本文的文献

1
Molecular mechanisms and intervention approaches of heart failure (Review).
Int J Mol Med. 2025 Aug;56(2). doi: 10.3892/ijmm.2025.5566. Epub 2025 Jun 13.
2
Experimental Models of Hypertrophic Cardiomyopathy: A Systematic Review.
JACC Basic Transl Sci. 2025 Apr;10(4):511-546. doi: 10.1016/j.jacbts.2024.10.017. Epub 2025 Jan 15.
3
Acidosis modifies effects of phosphorylated tropomyosin on the actin-myosin interaction in the myocardium.
J Muscle Res Cell Motil. 2021 Jun;42(2):343-353. doi: 10.1007/s10974-020-09593-4. Epub 2021 Jan 3.
4
Distinct hypertrophic cardiomyopathy genotypes result in convergent sarcomeric proteoform profiles revealed by top-down proteomics.
Proc Natl Acad Sci U S A. 2020 Oct 6;117(40):24691-24700. doi: 10.1073/pnas.2006764117. Epub 2020 Sep 23.
7
Tropomyosin pseudo-phosphorylation results in dilated cardiomyopathy.
J Biol Chem. 2019 Feb 22;294(8):2913-2923. doi: 10.1074/jbc.RA118.004879. Epub 2018 Dec 19.
8
Phenotyping cardiomyopathy in adult zebrafish.
Prog Biophys Mol Biol. 2018 Oct;138:116-125. doi: 10.1016/j.pbiomolbio.2018.05.013. Epub 2018 May 30.
9
Hypertrophic Cardiomyopathy: A Vicious Cycle Triggered by Sarcomere Mutations and Secondary Disease Hits.
Antioxid Redox Signal. 2019 Aug 1;31(4):318-358. doi: 10.1089/ars.2017.7236. Epub 2018 Apr 11.
10
Relevance of mouse models of cardiac fibrosis and hypertrophy in cardiac research.
Mol Cell Biochem. 2017 Jan;424(1-2):123-145. doi: 10.1007/s11010-016-2849-0. Epub 2016 Oct 20.

本文引用的文献

2
The tropomyosin binding region of cardiac troponin T modulates crossbridge recruitment dynamics in rat cardiac muscle fibers.
J Mol Biol. 2013 May 13;425(9):1565-81. doi: 10.1016/j.jmb.2013.01.028. Epub 2013 Jan 25.
3
Tropomyosin Ser-283 pseudo-phosphorylation slows myofibril relaxation.
Arch Biochem Biophys. 2013 Jul 1;535(1):30-8. doi: 10.1016/j.abb.2012.11.010. Epub 2012 Dec 8.
4
CKIP-1 inhibits cardiac hypertrophy by regulating class II histone deacetylase phosphorylation through recruiting PP2A.
Circulation. 2012 Dec 18;126(25):3028-40. doi: 10.1161/CIRCULATIONAHA.112.102780. Epub 2012 Nov 14.
5
Tropomyosin dephosphorylation results in compensated cardiac hypertrophy.
J Biol Chem. 2012 Dec 28;287(53):44478-89. doi: 10.1074/jbc.M112.402040. Epub 2012 Nov 12.
6
Familial hypertrophic cardiomyopathy related E180G mutation increases flexibility of human cardiac α-tropomyosin.
FEBS Lett. 2012 Sep 21;586(19):3503-7. doi: 10.1016/j.febslet.2012.08.005. Epub 2012 Aug 14.
7
Long-range effects of familial hypertrophic cardiomyopathy mutations E180G and D175N on the properties of tropomyosin.
Biochemistry. 2012 Aug 14;51(32):6413-20. doi: 10.1021/bi3006835. Epub 2012 Aug 1.
8
The flexibility of two tropomyosin mutants, D175N and E180G, that cause hypertrophic cardiomyopathy.
Biochem Biophys Res Commun. 2012 Aug 3;424(3):493-6. doi: 10.1016/j.bbrc.2012.06.141. Epub 2012 Jul 9.
9
Persistence length of human cardiac α-tropomyosin measured by single molecule direct probe microscopy.
PLoS One. 2012;7(6):e39676. doi: 10.1371/journal.pone.0039676. Epub 2012 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验