Suppr超能文献

大肠杆菌的 N 降解组:体内有限蛋白酶解生成大量带有 N 降解基序的蛋白质。

The N-degradome of Escherichia coli: limited proteolysis in vivo generates a large pool of proteins bearing N-degrons.

机构信息

From the Laboratory of Cell Biology and.

出版信息

J Biol Chem. 2013 Oct 4;288(40):28913-24. doi: 10.1074/jbc.M113.492108. Epub 2013 Aug 19.

Abstract

The N-end rule is a conserved mechanism found in Gram-negative bacteria and eukaryotes for marking proteins to be degraded by ATP-dependent proteases. Specific N-terminal amino acids (N-degrons) are sufficient to target a protein to the degradation machinery. In Escherichia coli, the adaptor ClpS binds an N-degron and delivers the protein to ClpAP for degradation. As ClpS recognizes N-terminal Phe, Trp, Tyr, and Leu, which are not found at the N terminus of proteins translated and processed by the canonical pathway, proteins must be post-translationally modified to expose an N-degron. One modification is catalyzed by Aat, an enzyme that adds leucine or phenylalanine to proteins with N-terminal lysine or arginine; however, such proteins are also not generated by the canonical protein synthesis pathway. Thus, the mechanisms producing N-degrons in proteins and the frequency of their occurrence largely remain a mystery. To address these issues, we used a ClpS affinity column to isolate interacting proteins from E. coli cell lysates under non-denaturing conditions. We identified more than 100 proteins that differentially bound to a column charged with wild-type ClpS and eluted with a peptide bearing an N-degron. Thirty-two of 37 determined N-terminal peptides had N-degrons. Most of the proteins were N-terminally truncated by endoproteases or exopeptidases, and many were further modified by Aat. The identities of the proteins point to possible physiological roles for the N-end rule in cell division, translation, transcription, and DNA replication and reveal widespread proteolytic processing of cellular proteins to generate N-end rule substrates.

摘要

N 端规则是一种在革兰氏阴性细菌和真核生物中保守的机制,用于标记蛋白质以被 ATP 依赖性蛋白酶降解。特定的 N 端氨基酸(N 降解物)足以将蛋白质靶向降解机制。在大肠杆菌中,衔接蛋白 ClpS 结合 N 降解物并将其递送至 ClpAP 进行降解。由于 ClpS 识别 N 端苯丙氨酸、色氨酸、酪氨酸和亮氨酸,这些氨基酸不存在于通过经典途径翻译和加工的蛋白质的 N 端,因此蛋白质必须经过翻译后修饰才能暴露 N 降解物。一种修饰由 Aat 催化,该酶将亮氨酸或苯丙氨酸添加到具有 N 端赖氨酸或精氨酸的蛋白质中;然而,这些蛋白质也不是通过经典的蛋白质合成途径产生的。因此,蛋白质中 N 降解物的产生机制及其发生的频率在很大程度上仍是一个谜。为了解决这些问题,我们使用 ClpS 亲和柱在非变性条件下从大肠杆菌细胞裂解物中分离相互作用的蛋白质。我们鉴定了 100 多种在野生型 ClpS 柱上差异结合并通过带有 N 降解物的肽洗脱的蛋白质。在 37 个确定的 N 端肽中,有 32 个具有 N 降解物。大多数蛋白质被内切蛋白酶或外肽酶 N 端截断,许多蛋白质进一步被 Aat 修饰。这些蛋白质的身份表明 N 端规则在细胞分裂、翻译、转录和 DNA 复制中的生理作用,并揭示了细胞蛋白质的广泛蛋白水解加工以产生 N 端规则底物。

相似文献

1
The N-degradome of Escherichia coli: limited proteolysis in vivo generates a large pool of proteins bearing N-degrons.
J Biol Chem. 2013 Oct 4;288(40):28913-24. doi: 10.1074/jbc.M113.492108. Epub 2013 Aug 19.
2
Structural basis of N-end rule substrate recognition in Escherichia coli by the ClpAP adaptor protein ClpS.
EMBO Rep. 2009 May;10(5):508-14. doi: 10.1038/embor.2009.62. Epub 2009 Apr 17.
3
ClpS is an essential component of the N-end rule pathway in Escherichia coli.
Nature. 2006 Feb 9;439(7077):753-6. doi: 10.1038/nature04412.
4
Modification of PATase by L/F-transferase generates a ClpS-dependent N-end rule substrate in Escherichia coli.
EMBO J. 2009 Jun 17;28(12):1732-44. doi: 10.1038/emboj.2009.134. Epub 2009 May 14.
5
Affinity isolation and biochemical characterization of N-degron ligands using the N-recognin, ClpS.
Methods Enzymol. 2023;686:143-163. doi: 10.1016/bs.mie.2023.02.011. Epub 2023 Mar 15.
6
Structural basis for the N-degron specificity of ClpS1 from Arabidopsis thaliana.
Protein Sci. 2021 Mar;30(3):700-708. doi: 10.1002/pro.4018. Epub 2020 Dec 30.
7
ClpS is the recognition component for Escherichia coli substrates of the N-end rule degradation pathway.
Mol Microbiol. 2009 Apr;72(2):506-17. doi: 10.1111/j.1365-2958.2009.06666.x. Epub 2009 Mar 17.
8
Molecular docking and molecular simulation studies for N-degron selectivity of chloroplastic ClpS from Chlamydomonas reinhardtii.
Comput Biol Chem. 2023 Apr;103:107825. doi: 10.1016/j.compbiolchem.2023.107825. Epub 2023 Feb 9.
9
The Intrinsically Disordered N-terminal Extension of the ClpS Adaptor Reprograms Its Partner AAA+ ClpAP Protease.
J Mol Biol. 2020 Aug 7;432(17):4908-4921. doi: 10.1016/j.jmb.2020.07.007. Epub 2020 Jul 17.
10
Remodeling of a delivery complex allows ClpS-mediated degradation of N-degron substrates.
Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):E3853-9. doi: 10.1073/pnas.1414933111. Epub 2014 Sep 3.

引用本文的文献

2
ClpS Directs Degradation of N-Degron Substrates With Primary Destabilizing Residues in Mycolicibacterium smegmatis.
Mol Microbiol. 2025 Jan;123(1):16-30. doi: 10.1111/mmi.15334. Epub 2024 Dec 3.
3
The lowdown on breakdown: Open questions in plant proteolysis.
Plant Cell. 2024 Sep 3;36(9):2931-2975. doi: 10.1093/plcell/koae193.
4
Influence of the mRNA initial region on protein production: a case study using recombinant detoxified pneumolysin as a model.
Front Bioeng Biotechnol. 2024 Jan 8;11:1304965. doi: 10.3389/fbioe.2023.1304965. eCollection 2023.
5
Membrane Proteins as a Regulator for Antibiotic Persistence in Gram-Negative Bacteria.
J Microbiol. 2023 Mar;61(3):331-341. doi: 10.1007/s12275-023-00024-w. Epub 2023 Feb 17.
7
Bacterial degrons in synthetic circuits.
Open Biol. 2022 Aug;12(8):220180. doi: 10.1098/rsob.220180. Epub 2022 Aug 17.
8
Kinetics of Bovine leukemia virus aspartic protease reveals its dimerization and conformational change.
PLoS One. 2022 Jul 22;17(7):e0271671. doi: 10.1371/journal.pone.0271671. eCollection 2022.
9
A dual-reporter system for investigating and optimizing protein translation and folding in E. coli.
Nat Commun. 2021 Oct 19;12(1):6093. doi: 10.1038/s41467-021-26337-1.
10
Applications of Bacterial Degrons and Degraders - Toward Targeted Protein Degradation in Bacteria.
Front Mol Biosci. 2021 May 7;8:669762. doi: 10.3389/fmolb.2021.669762. eCollection 2021.

本文引用的文献

2
The ClpS adaptor mediates staged delivery of N-end rule substrates to the AAA+ ClpAP protease.
Mol Cell. 2011 Jul 22;43(2):217-28. doi: 10.1016/j.molcel.2011.06.009.
3
The N-end rule pathway and regulation by proteolysis.
Protein Sci. 2011 Aug;20(8):1298-345. doi: 10.1002/pro.666.
4
ClpX(P) generates mechanical force to unfold and translocate its protein substrates.
Cell. 2011 Apr 29;145(3):459-69. doi: 10.1016/j.cell.2011.04.010.
5
Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine.
Cell. 2011 Apr 15;145(2):257-67. doi: 10.1016/j.cell.2011.03.036.
6
Translation initiation region dependency of translation initiation in Escherichia coli by IF1 and kasugamycin.
FEBS J. 2010 Jun;277(11):2428-39. doi: 10.1111/j.1742-4658.2010.07657.x. Epub 2010 Apr 30.
7
The AAA+ ClpX machine unfolds a keystone subunit to remodel the Mu transpososome.
Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2437-42. doi: 10.1073/pnas.0910905106. Epub 2010 Jan 25.
8
A single ClpS monomer is sufficient to direct the activity of the ClpA hexamer.
J Biol Chem. 2010 Mar 19;285(12):8771-81. doi: 10.1074/jbc.M109.053736. Epub 2010 Jan 12.
9
Molecular basis of substrate selection by the N-end rule adaptor protein ClpS.
Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8888-93. doi: 10.1073/pnas.0903614106. Epub 2009 May 18.
10
Modification of PATase by L/F-transferase generates a ClpS-dependent N-end rule substrate in Escherichia coli.
EMBO J. 2009 Jun 17;28(12):1732-44. doi: 10.1038/emboj.2009.134. Epub 2009 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验