Suppr超能文献

相似文献

1
Remodeling of a delivery complex allows ClpS-mediated degradation of N-degron substrates.
Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):E3853-9. doi: 10.1073/pnas.1414933111. Epub 2014 Sep 3.
2
The ClpS adaptor mediates staged delivery of N-end rule substrates to the AAA+ ClpAP protease.
Mol Cell. 2011 Jul 22;43(2):217-28. doi: 10.1016/j.molcel.2011.06.009.
3
The Intrinsically Disordered N-terminal Extension of the ClpS Adaptor Reprograms Its Partner AAA+ ClpAP Protease.
J Mol Biol. 2020 Aug 7;432(17):4908-4921. doi: 10.1016/j.jmb.2020.07.007. Epub 2020 Jul 17.
4
Division of labor between the pore-1 loops of the D1 and D2 AAA+ rings coordinates substrate selectivity of the ClpAP protease.
J Biol Chem. 2021 Dec;297(6):101407. doi: 10.1016/j.jbc.2021.101407. Epub 2021 Nov 12.
5
Distinct structural elements of the adaptor ClpS are required for regulating degradation by ClpAP.
Nat Struct Mol Biol. 2008 Mar;15(3):288-94. doi: 10.1038/nsmb.1392. Epub 2008 Feb 24.
6
An intrinsic degradation tag on the ClpA C-terminus regulates the balance of ClpAP complexes with different substrate specificity.
J Mol Biol. 2008 Dec 12;384(2):503-11. doi: 10.1016/j.jmb.2008.09.046. Epub 2008 Sep 26.
7
A single ClpS monomer is sufficient to direct the activity of the ClpA hexamer.
J Biol Chem. 2010 Mar 19;285(12):8771-81. doi: 10.1074/jbc.M109.053736. Epub 2010 Jan 12.
8
ClpS is an essential component of the N-end rule pathway in Escherichia coli.
Nature. 2006 Feb 9;439(7077):753-6. doi: 10.1038/nature04412.
10
ClpS, a substrate modulator of the ClpAP machine.
Mol Cell. 2002 Mar;9(3):673-83. doi: 10.1016/s1097-2765(02)00485-9.

引用本文的文献

1
Structure and Mechanism of Aminoacyl-tRNA-Protein L/F- and R-transferases.
J Mol Biol. 2025 Sep 1;437(17):169210. doi: 10.1016/j.jmb.2025.169210. Epub 2025 May 15.
2
MecA: A Multifunctional ClpP-Dependent and Independent Regulator in Gram-Positive Bacteria.
Mol Microbiol. 2025 May;123(5):433-438. doi: 10.1111/mmi.15356. Epub 2025 Mar 11.
3
ClpS Directs Degradation of N-Degron Substrates With Primary Destabilizing Residues in Mycolicibacterium smegmatis.
Mol Microbiol. 2025 Jan;123(1):16-30. doi: 10.1111/mmi.15334. Epub 2024 Dec 3.
4
AAA+ protease-adaptor structures reveal altered conformations and ring specialization.
Nat Struct Mol Biol. 2022 Nov;29(11):1068-1079. doi: 10.1038/s41594-022-00850-3. Epub 2022 Nov 3.
5
Applications of Bacterial Degrons and Degraders - Toward Targeted Protein Degradation in Bacteria.
Front Mol Biosci. 2021 May 7;8:669762. doi: 10.3389/fmolb.2021.669762. eCollection 2021.
6
Low Cytoplasmic Magnesium Increases the Specificity of the Lon and ClpAP Proteases.
J Bacteriol. 2021 Jun 22;203(14):e0014321. doi: 10.1128/JB.00143-21.
7
The ATF3 Transcription Factor Is a Short-Lived Substrate of the Arg/N-Degron Pathway.
Biochemistry. 2020 Aug 4;59(30):2796-2812. doi: 10.1021/acs.biochem.0c00514. Epub 2020 Jul 21.
8
The Intrinsically Disordered N-terminal Extension of the ClpS Adaptor Reprograms Its Partner AAA+ ClpAP Protease.
J Mol Biol. 2020 Aug 7;432(17):4908-4921. doi: 10.1016/j.jmb.2020.07.007. Epub 2020 Jul 17.
9
Recognition of nonproline N-terminal residues by the Pro/N-degron pathway.
Proc Natl Acad Sci U S A. 2020 Jun 23;117(25):14158-14167. doi: 10.1073/pnas.2007085117. Epub 2020 Jun 8.
10
Five enzymes of the Arg/N-degron pathway form a targeting complex: The concept of superchanneling.
Proc Natl Acad Sci U S A. 2020 May 19;117(20):10778-10788. doi: 10.1073/pnas.2003043117. Epub 2020 May 4.

本文引用的文献

1
Paradigms of protein degradation by the proteasome.
Curr Opin Struct Biol. 2014 Feb;24:156-64. doi: 10.1016/j.sbi.2014.02.002. Epub 2014 Mar 14.
2
Stepwise unfolding of a β barrel protein by the AAA+ ClpXP protease.
J Mol Biol. 2011 Oct 14;413(1):4-16. doi: 10.1016/j.jmb.2011.07.041. Epub 2011 Jul 29.
3
The ClpS adaptor mediates staged delivery of N-end rule substrates to the AAA+ ClpAP protease.
Mol Cell. 2011 Jul 22;43(2):217-28. doi: 10.1016/j.molcel.2011.06.009.
4
AAA+ proteases: ATP-fueled machines of protein destruction.
Annu Rev Biochem. 2011;80:587-612. doi: 10.1146/annurev-biochem-060408-172623.
5
Structure and mechanism of the hexameric MecA-ClpC molecular machine.
Nature. 2011 Mar 17;471(7338):331-5. doi: 10.1038/nature09780. Epub 2011 Mar 2.
6
Defining the geometry of the two-component proteasome degron.
Nat Chem Biol. 2011 Mar;7(3):161-7. doi: 10.1038/nchembio.521. Epub 2011 Jan 30.
8
A single ClpS monomer is sufficient to direct the activity of the ClpA hexamer.
J Biol Chem. 2010 Mar 19;285(12):8771-81. doi: 10.1074/jbc.M109.053736. Epub 2010 Jan 12.
9
Studying chaperone-proteases using a real-time approach based on FRET.
J Struct Biol. 2009 Nov;168(2):267-77. doi: 10.1016/j.jsb.2009.07.003. Epub 2009 Jul 8.
10
The spliceosome: design principles of a dynamic RNP machine.
Cell. 2009 Feb 20;136(4):701-18. doi: 10.1016/j.cell.2009.02.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验