Max Planck Institute for Brain Research, Deutschordenstrasse 46 D-60528, Frankfurt, Germany.
Neural Dev. 2013 Aug 20;8:16. doi: 10.1186/1749-8104-8-16.
Neurons in sympathetic ganglia and neuroendocrine cells in the adrenal medulla share not only their embryonic origin from sympathoadrenal precursors in the neural crest but also a range of functional features. These include the capacity for noradrenaline biosynthesis, vesicular storage and regulated release. Yet the regulation of neuronal properties in early neuroendocrine differentiation is a matter of debate and the developmental expression of the vesicle fusion machinery, which includes components found in both neurons and neuroendocrine cells, is not resolved.
Analysis of synaptic protein and pan-neuronal marker mRNA expression during mouse development uncovers profound differences between sympathetic neurons and adrenal chromaffin cells, which result in qualitatively similar but quantitatively divergent transcript profiles. In sympathetic neurons embryonic upregulation of synaptic protein mRNA follows early and persistent induction of pan-neuronal marker transcripts. In adrenal chromaffin cells pan-neuronal marker expression occurs only transiently and synaptic protein messages remain at distinctly low levels throughout embryogenesis. Embryonic induction of synaptotagmin I (Syt1) in sympathetic ganglia and postnatal upregulation of synaptotagmin VII (Syt7) in adrenal medulla results in a cell type-specific difference in isoform prevalence. Dicer 1 inactivation in catecholaminergic cells reduces high neuronal synaptic protein mRNA levels but not their neuroendocrine low level expression. Pan-neuronal marker mRNAs are induced in chromaffin cells to yield a more neuron-like transcript pattern, while ultrastructure is not altered.
Our study demonstrates that remarkably different gene regulatory programs govern the expression of synaptic proteins in the neuronal and neuroendocrine branch of the sympathoadrenal system. They result in overlapping but quantitatively divergent transcript profiles. Dicer 1-dependent regulation is required to establish high neuronal mRNA levels for synaptic proteins and to maintain repression of neurofilament messages in neuroendocrine cells.
交感神经节中的神经元和肾上腺髓质中的神经内分泌细胞不仅具有相同的胚胎起源(来自神经嵴中的交感肾上腺前体细胞),而且具有一系列的功能特征。这些特征包括去甲肾上腺素生物合成、囊泡储存和调节释放的能力。然而,早期神经内分泌分化中神经元特性的调节仍是一个争论的问题,并且囊泡融合机制的发育表达(包括在神经元和神经内分泌细胞中都发现的成分)尚未解决。
在小鼠发育过程中分析突触蛋白和泛神经元标记物 mRNA 的表达揭示了交感神经元和肾上腺嗜铬细胞之间的深刻差异,这些差异导致了质量相似但数量不同的转录谱。在交感神经元中,突触蛋白 mRNA 的胚胎上调早于并持续诱导泛神经元标记物转录物的表达。在肾上腺嗜铬细胞中,泛神经元标记物的表达仅短暂发生,而突触蛋白的mRNA 在整个胚胎发生过程中始终保持明显低水平。在交感神经节中,突触融合蛋白 I(Syt1)的胚胎诱导和在肾上腺髓质中突触融合蛋白 VII(Syt7)的出生后上调导致了亚型流行率的细胞类型特异性差异。儿茶酚胺能细胞中 Dicer 1 的失活降低了高神经元突触蛋白 mRNA 水平,但不影响其神经内分泌的低水平表达。泛神经元标记物 mRNAs 在嗜铬细胞中被诱导,产生更类似于神经元的转录模式,而超微结构没有改变。
我们的研究表明,在交感肾上腺系统的神经元和神经内分泌分支中,显著不同的基因调控程序控制着突触蛋白的表达。它们导致重叠但数量不同的转录谱。Dicer 1 依赖性调节对于建立高神经元突触蛋白 mRNA 水平和维持神经内分泌细胞中神经丝 mRNA 的抑制是必需的。