Suppr超能文献

使用基函数进行顶叶皮层的空间变换。

Spatial transformations in the parietal cortex using basis functions.

机构信息

Institute for Cognitive and Computational Sciences, Georgetown University, Washington, DC.

出版信息

J Cogn Neurosci. 1997 Mar;9(2):222-37. doi: 10.1162/jocn.1997.9.2.222.

Abstract

Sensorimotor transformations are nonlinear mappings of sensory inputs to motor responses. We explore here the possibility that the responses of single neurons in the parietal cortex serve as basis functions for these transformations. Basis function decomposition is a general method for approximating nonlinear functions that is computationally efficient and well suited for adaptive modification. In particular, the responses of single parietal neurons can be approximated by the product of a Gaussian function of retinal location and a sigmoid function of eye position, called a gain field. A large set of such functions forms a basis set that can be used to perform an arbitrary motor response through a direct projection. We compare this hypothesis with other approaches that are commonly used to model population codes, such as computational maps and vectorial representations. Neither of these alternatives can fully account for the responses of parietal neurons, and they are computationally less efficient for nonlinear transformations. Basis functions also have the advantage of not depending on any coordinate system or reference frame. As a consequence, the position of an object can be represented in multiple reference frames simultaneously, a property consistent with the behavior of hemineglect patients with lesions in the parietal cortex.

摘要

感觉运动变换是非线性的感觉输入到运动反应的映射。我们在这里探讨了顶叶皮层单个神经元的反应是否可以作为这些变换的基函数。基函数分解是一种用于逼近非线性函数的通用方法,它计算效率高,非常适合自适应修改。特别是,单个顶叶神经元的反应可以通过视网膜位置的高斯函数和眼位的 sigmoid 函数的乘积来近似,称为增益场。这样的函数集合可以形成一个基集,通过直接投影来执行任意的运动反应。我们将这个假设与其他常用于建模群体代码的方法进行了比较,例如计算映射和向量表示。这些替代方案都不能完全解释顶叶神经元的反应,并且对于非线性变换来说计算效率更低。基函数还有一个优点,即不依赖于任何坐标系或参考框架。因此,可以同时在多个参考框架中表示一个物体的位置,这与顶叶皮层损伤的半忽视患者的行为一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验