Tye Kay M, Miller Earl K, Taschbach Felix H, Benna Marcus K, Rigotti Mattia, Fusi Stefano
Salk Institute for Biological Studies, La Jolla, CA, USA; Howard Hughes Medical Institute, La Jolla, CA; Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Kavli Institute for Brain and Mind, San Diego, CA, USA.
The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Neuron. 2024 Jul 17;112(14):2289-2303. doi: 10.1016/j.neuron.2024.04.017. Epub 2024 May 9.
The property of mixed selectivity has been discussed at a computational level and offers a strategy to maximize computational power by adding versatility to the functional role of each neuron. Here, we offer a biologically grounded implementational-level mechanistic explanation for mixed selectivity in neural circuits. We define pure, linear, and nonlinear mixed selectivity and discuss how these response properties can be obtained in simple neural circuits. Neurons that respond to multiple, statistically independent variables display mixed selectivity. If their activity can be expressed as a weighted sum, then they exhibit linear mixed selectivity; otherwise, they exhibit nonlinear mixed selectivity. Neural representations based on diverse nonlinear mixed selectivity are high dimensional; hence, they confer enormous flexibility to a simple downstream readout neural circuit. However, a simple neural circuit cannot possibly encode all possible mixtures of variables simultaneously, as this would require a combinatorially large number of mixed selectivity neurons. Gating mechanisms like oscillations and neuromodulation can solve this problem by dynamically selecting which variables are mixed and transmitted to the readout.
混合选择性的特性已在计算层面进行了讨论,它提供了一种策略,即通过增加每个神经元功能角色的通用性来最大化计算能力。在此,我们为神经回路中的混合选择性提供一种基于生物学的实现层面的机理解释。我们定义了纯选择性、线性混合选择性和非线性混合选择性,并讨论了如何在简单的神经回路中获得这些响应特性。对多个统计独立变量做出响应的神经元表现出混合选择性。如果它们的活动可以表示为加权和,那么它们表现出线性混合选择性;否则,它们表现出非线性混合选择性。基于多样非线性混合选择性的神经表征是高维的;因此,它们赋予简单的下游读出神经回路巨大的灵活性。然而,简单的神经回路不可能同时编码所有可能的变量组合,因为这需要组合数量巨大的混合选择性神经元。诸如振荡和神经调节等门控机制可以通过动态选择哪些变量被混合并传输到读出过程来解决这个问题。