Suppr超能文献

混合选择性:复杂性的细胞计算

Mixed selectivity: Cellular computations for complexity.

作者信息

Tye Kay M, Miller Earl K, Taschbach Felix H, Benna Marcus K, Rigotti Mattia, Fusi Stefano

机构信息

Salk Institute for Biological Studies, La Jolla, CA, USA; Howard Hughes Medical Institute, La Jolla, CA; Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Kavli Institute for Brain and Mind, San Diego, CA, USA.

The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Neuron. 2024 Jul 17;112(14):2289-2303. doi: 10.1016/j.neuron.2024.04.017. Epub 2024 May 9.

Abstract

The property of mixed selectivity has been discussed at a computational level and offers a strategy to maximize computational power by adding versatility to the functional role of each neuron. Here, we offer a biologically grounded implementational-level mechanistic explanation for mixed selectivity in neural circuits. We define pure, linear, and nonlinear mixed selectivity and discuss how these response properties can be obtained in simple neural circuits. Neurons that respond to multiple, statistically independent variables display mixed selectivity. If their activity can be expressed as a weighted sum, then they exhibit linear mixed selectivity; otherwise, they exhibit nonlinear mixed selectivity. Neural representations based on diverse nonlinear mixed selectivity are high dimensional; hence, they confer enormous flexibility to a simple downstream readout neural circuit. However, a simple neural circuit cannot possibly encode all possible mixtures of variables simultaneously, as this would require a combinatorially large number of mixed selectivity neurons. Gating mechanisms like oscillations and neuromodulation can solve this problem by dynamically selecting which variables are mixed and transmitted to the readout.

摘要

混合选择性的特性已在计算层面进行了讨论,它提供了一种策略,即通过增加每个神经元功能角色的通用性来最大化计算能力。在此,我们为神经回路中的混合选择性提供一种基于生物学的实现层面的机理解释。我们定义了纯选择性、线性混合选择性和非线性混合选择性,并讨论了如何在简单的神经回路中获得这些响应特性。对多个统计独立变量做出响应的神经元表现出混合选择性。如果它们的活动可以表示为加权和,那么它们表现出线性混合选择性;否则,它们表现出非线性混合选择性。基于多样非线性混合选择性的神经表征是高维的;因此,它们赋予简单的下游读出神经回路巨大的灵活性。然而,简单的神经回路不可能同时编码所有可能的变量组合,因为这需要组合数量巨大的混合选择性神经元。诸如振荡和神经调节等门控机制可以通过动态选择哪些变量被混合并传输到读出过程来解决这个问题。

相似文献

1
Mixed selectivity: Cellular computations for complexity.混合选择性:复杂性的细胞计算
Neuron. 2024 Jul 17;112(14):2289-2303. doi: 10.1016/j.neuron.2024.04.017. Epub 2024 May 9.

引用本文的文献

8
Whisking and locomotion are jointly represented in superior colliculus neurons.上丘神经元共同表征了快速扫视和运动。
PLoS Biol. 2025 Apr 7;23(4):e3003087. doi: 10.1371/journal.pbio.3003087. eCollection 2025 Apr.

本文引用的文献

4
8
Brain rhythms have come of age.脑电波研究已日臻成熟。
Neuron. 2023 Apr 5;111(7):922-926. doi: 10.1016/j.neuron.2023.03.018.
10
The geometry of cortical representations of touch in rodents.啮齿动物触觉皮层表征的几何学
Nat Neurosci. 2023 Feb;26(2):239-250. doi: 10.1038/s41593-022-01237-9. Epub 2023 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验