Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
Curr Top Dev Biol. 2013;105:1-36. doi: 10.1016/B978-0-12-396968-2.00001-4.
During the last century, insect model systems have provided fascinating insights into the endocrinology and developmental biology of all animals. During the insect life cycle, molts and metamorphosis delineate transitions from one developmental stage to the next. In most insects, pulses of the steroid hormone ecdysone drive these developmental transitions by activating signaling cascades in target tissues. In holometabolous insects, ecdysone triggers metamorphosis, the remarkable remodeling of an immature larva into a sexually mature adult. The input from another developmental hormone, juvenile hormone (JH), is required to repress metamorphosis by promoting juvenile fates until the larva has acquired sufficient nutrients to survive metamorphosis. Ecdysone and JH act together as key endocrine timers to precisely control the onset of developmental transitions such as the molts, pupation, or eclosion. In this review, we will focus on the role of the endocrine system and the circadian clock, both individually and together, in temporally regulating insect development. Since this is not a coherent field, we will review recent developments that serve as examples to illuminate this complex topic. First, we will consider studies conducted in Rhodnius that revealed how circadian pathways exert temporal control over the production and release of ecdysone. We will then take a look at molecular and genetic data that revealed the presence of two circadian clocks, located in the brain and the prothoracic gland, that regulate eclosion rhythms in Drosophila. In this context, we will also review recent developments that examined how the ecdysone hierarchy delays the differentiation of the crustacean cardioactive peptide (CCAP) neurons, an event that is critical for the timing of ecdysis and eclosion. Finally, we will discuss some recent findings that transformed our understanding of JH function.
在上个世纪,昆虫模型系统为所有动物的内分泌学和发育生物学提供了引人入胜的见解。在昆虫的生命周期中,蜕皮和变态标志着从一个发育阶段到下一个发育阶段的过渡。在大多数昆虫中,类固醇激素蜕皮激素的脉冲通过在靶组织中激活信号级联来驱动这些发育转变。在完全变态的昆虫中,蜕皮激素引发变态,即从不成熟的幼虫到性成熟的成虫的显著重塑。另一种发育激素——保幼激素 (JH) 的输入通过促进幼体命运来抑制变态,从而促使幼虫获得足够的营养物质来生存变态。蜕皮激素和 JH 共同作为关键的内分泌定时器,通过精确控制发育转变(如蜕皮、蛹化或羽化)的开始来发挥作用。在这篇综述中,我们将重点讨论内分泌系统和生物钟各自以及共同在时间上调节昆虫发育的作用。由于这不是一个连贯的领域,我们将回顾最近的发展,这些发展为阐明这一复杂主题提供了例证。首先,我们将考虑在 Rhodnius 中进行的研究,这些研究揭示了生物钟途径如何对蜕皮激素的产生和释放进行时间控制。然后,我们将研究分子和遗传数据,这些数据揭示了两个生物钟的存在,它们位于大脑和前胸腺中,调节果蝇的羽化节律。在这种情况下,我们还将回顾最近的研究进展,这些研究检查了蜕皮激素层次结构如何延迟甲壳动物心脏活性肽 (CCAP) 神经元的分化,这对于蜕皮和羽化的时间至关重要。最后,我们将讨论一些最近的发现,这些发现改变了我们对 JH 功能的理解。