Ulloa Leslie Torres, Roy Dylan, Minichiello Angie, Bechthold Fosca, de Bivort Benjamin, Elya Carolyn
Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA, 02138.
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA, 02138.
bioRxiv. 2025 Jun 18:2025.06.18.660419. doi: 10.1101/2025.06.18.660419.
Timing in the natural world is a matter of life or death, consequently, nearly all life on Earth has evolved internal circadian clocks. Many behavior-manipulating parasites exhibit striking daily timing, but whether this is clock-driven has remained unclear. Here, we leveraged the laboratory-tractable zombie fruit fly model, infected by the behavior manipulating fungus , to tackle this long standing mystery. Using an automated behavioral paradigm, we found that the timing of death of wild-type flies continues to occur with ~21 hour periodicity in the absence of environmental cues. Surprisingly, we also discovered that light is required within the first 24 hours of exposure for to infect and kill flies. Experiments with circadian and photoreception mutants revealed that death is independent of host genotype, suggesting the fungus-not the host-drives this rhythm. Transcriptomic analysis of grown fungus revealed that maintains rhythmic gene expression independent of the fly host that peaks at sunset and has a free-running period of ~22 hours. Among cycling genes, we identified a transcript encoding a protein with high homology to , the blue light sensor and core component of the molecular oscillator in the model ascomycete fungus . Altogether, our findings suggest that has an endogenous circadian clock that it uses to control the timing of host death. This study provides evidence that a fungal clock can influence fly outcomes, pointing to a new mechanism by which parasites temporally coordinate host manipulation.
在自然界中,时间安排关乎生死,因此地球上几乎所有生命都进化出了内在的昼夜节律时钟。许多操控行为的寄生虫表现出显著的每日定时规律,但这是否由时钟驱动仍不清楚。在这里,我们利用实验室易处理的被行为操控真菌感染的僵尸果蝇模型,来解决这个长期存在的谜团。通过一种自动化行为范式,我们发现,在没有环境线索的情况下,野生型果蝇的死亡时间仍以约21小时的周期持续发生。令人惊讶的是,我们还发现,在暴露的头24小时内需要光照才能感染并杀死果蝇。对昼夜节律和光感受器突变体的实验表明,死亡与宿主基因型无关,这表明是真菌而非宿主驱动了这种节律。对生长中的真菌进行转录组分析发现,真菌维持着独立于果蝇宿主的节律性基因表达,其在日落时达到峰值,自由运行周期约为22小时。在循环基因中,我们鉴定出一个转录本,其编码的蛋白质与模式子囊菌中蓝光传感器及分子振荡器的核心成分具有高度同源性。总之,我们的研究结果表明,该真菌具有一个内源性昼夜节律时钟,它利用这个时钟来控制宿主死亡的时间。这项研究提供了证据,表明真菌时钟可以影响果蝇的结果,指出了寄生虫在时间上协调宿主操控的一种新机制。