Suppr超能文献

CopC 的构象稳定性及残基 Tyr79 和 Trp83 的作用。

Conformational stability of CopC and roles of residues Tyr79 and Trp83.

机构信息

Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China, 030006.

出版信息

Protein Sci. 2013 Nov;22(11):1519-30. doi: 10.1002/pro.2338. Epub 2013 Sep 17.

Abstract

CopC is a periplasmic copper Chaperone protein that has a β-barrel fold and two metal-binding sites distinct for Cu(II) and Cu(I). In the article, four mutants (Y79F, Y79W, Y79WW83L, Y79WW83F) were obtained by site-directed mutagenesis. The far-UV CD spectra of the proteins were similar, suggesting that mutations did not bring any significant changes in secondary structures. Meanwhile the effects of mutations on the protein's function were manifested by Cu(II) binding. Fluorescence lifetime measurement and quenching of tryptophan fluorescence by acrylamide and KI showed that the microenvironment around Trp83 was more hydrophobic than that around Tyr79 in apoCopC. Unfolding experiments induced by guanidinium chloride (GdnHCl), urea provided the conformational stability of each protein. The Δ<ΔG(0) element > obtained using the model of structural elements was used to show the role of Tyr79 and Trp83. On the one hand, the <ΔG(0) element > induced by urea for Y79F, Y79W have a loss of 6.51, 2.03 kJ/mol, respectively, compared with apoCopC, proving that replacement of Tyr79 by Phe or Trp all decreased the protein stability, meaning that the hydrogen bonds interactions between Tyr79 and Thr75 played an important role in stabilizing apoCopC. On the other hand, the <ΔG(0) element > induced by urea for Y79WW83L have a loss of 11.44 kJ/mol, but for Y79WW83F did a raise of 1.82 kJ/mol compared with Y79W. The replacement of Trp83 by Phe and Leu yields opposite effects on protein stability, which suggested that the aromatic ring of Trp83 was important in maintaining the hydrophobic core of apoCopC.

摘要

CopC 是一种周质铜伴侣蛋白,具有β-桶折叠结构和两个金属结合位点,分别用于结合 Cu(II)和 Cu(I)。在本文中,通过定点突变获得了四个突变体(Y79F、Y79W、Y79WW83L、Y79WW83F)。蛋白质的远紫外 CD 光谱相似,表明突变并未导致二级结构发生任何显著变化。同时,突变对蛋白质功能的影响体现在 Cu(II)结合上。荧光寿命测量和丙烯酰胺和 KI 猝灭色氨酸荧光表明,apoCopC 中色氨酸 83 周围的微环境比酪氨酸 79 周围更疏水。胍盐酸盐(GdnHCl)和脲诱导的去折叠实验提供了每种蛋白质的构象稳定性。使用结构元件模型获得的 Δ<ΔG(0) 元素 >用于显示 Tyr79 和 Trp83 的作用。一方面,与 apoCopC 相比,Y79F 和 Y79W 的 <ΔG(0) 元素 > 分别因脲引起的丢失为 6.51 和 2.03 kJ/mol,证明 Tyr79 被 Phe 或 Trp 取代都会降低蛋白质稳定性,这意味着 Tyr79 与 Thr75 之间的氢键相互作用在稳定 apoCopC 中发挥了重要作用。另一方面,与 Y79W 相比,Y79WW83L 的 <ΔG(0) 元素 > 因脲引起的丢失为 11.44 kJ/mol,而 Y79WW83F 的 <ΔG(0) 元素 > 则增加了 1.82 kJ/mol。色氨酸 83 被苯丙氨酸和亮氨酸取代对蛋白质稳定性产生相反的影响,这表明色氨酸 83 的芳环对维持 apoCopC 的疏水性核心很重要。

相似文献

1
Conformational stability of CopC and roles of residues Tyr79 and Trp83.
Protein Sci. 2013 Nov;22(11):1519-30. doi: 10.1002/pro.2338. Epub 2013 Sep 17.
2
The effect of Trp83 mutant on the properties of CopC.
Spectrochim Acta A Mol Biomol Spectrosc. 2008 Jul;70(2):384-8. doi: 10.1016/j.saa.2007.10.035. Epub 2007 Nov 9.
3
The stability and the metal ions binding properties of mutant A85M of CopC.
J Photochem Photobiol B. 2016 Aug;161:387-95. doi: 10.1016/j.jphotobiol.2016.06.006. Epub 2016 Jun 7.
6
Study on the interaction between pyridoxal and CopC by multi-spectroscopy and docking methods.
Spectrochim Acta A Mol Biomol Spectrosc. 2019 Feb 5;208:214-221. doi: 10.1016/j.saa.2018.09.053. Epub 2018 Oct 2.
7
Role of copper in folding and stability of cupredoxin-like copper-carrier protein CopC.
Arch Biochem Biophys. 2007 Nov 1;467(1):58-66. doi: 10.1016/j.abb.2007.08.014. Epub 2007 Aug 29.
8
Enhanced catalytic site thermal stability of cold-adapted esterase EstK by a W208Y mutation.
Biochim Biophys Acta. 2014 Jun;1844(6):1076-82. doi: 10.1016/j.bbapap.2014.03.009. Epub 2014 Mar 22.
10
Effect of active-site aromatic residues Tyr or Phe on activity and stability of glucose 6-phosphate dehydrogenase from psychrophilic Arctic bacterium Sphingomonas sp.
Biochim Biophys Acta Proteins Proteom. 2021 Jan;1869(1):140543. doi: 10.1016/j.bbapap.2020.140543. Epub 2020 Sep 20.

引用本文的文献

1
Hydrogen bonds are a primary driving force for de novo protein folding.
Acta Crystallogr D Struct Biol. 2017 Dec 1;73(Pt 12):955-969. doi: 10.1107/S2059798317015303. Epub 2017 Nov 10.
2
3
The effect of metals on SDS-induced partially folded states of CopC.
J Biol Inorg Chem. 2014 Mar;19(3):359-74. doi: 10.1007/s00775-013-1071-8. Epub 2013 Dec 11.

本文引用的文献

2
Protein structure prediction on the Web: a case study using the Phyre server.
Nat Protoc. 2009;4(3):363-71. doi: 10.1038/nprot.2009.2.
3
Interaction of cisplatin and analogues with a Met-rich protein site.
J Biol Inorg Chem. 2009 Feb;14(2):163-5. doi: 10.1007/s00775-008-0452-x. Epub 2008 Nov 26.
4
Role of copper in folding and stability of cupredoxin-like copper-carrier protein CopC.
Arch Biochem Biophys. 2007 Nov 1;467(1):58-66. doi: 10.1016/j.abb.2007.08.014. Epub 2007 Aug 29.
7
On the Structure of Native, Denatured, and Coagulated Proteins.
Proc Natl Acad Sci U S A. 1936 Jul;22(7):439-47. doi: 10.1073/pnas.22.7.439.
9
Some factors in the interpretation of protein denaturation.
Adv Protein Chem. 1959;14:1-63. doi: 10.1016/s0065-3233(08)60608-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验