1 Department of Radiation Oncology, Duke University Medical Center , Durham, North Carolina.
Antioxid Redox Signal. 2014 May 20;20(15):2416-36. doi: 10.1089/ars.2013.5576. Epub 2013 Oct 19.
Half a century of research provided unambiguous proof that superoxide and species derived from it-reactive oxygen species (ROS)-play a central role in many diseases and degenerative processes. This stimulated the search for pharmaceutical agents that are capable of preventing oxidative damage, and methods of assessing their therapeutic potential.
The limitations of superoxide dismutase (SOD) as a therapeutic tool directed attention to small molecules, SOD mimics, that are capable of catalytically scavenging superoxide. Several groups of compounds, based on either metal complexes, including metalloporphyrins, metallocorroles, Mn(II) cyclic polyamines, and Mn(III) salen derivatives, or non-metal based compounds, such as fullerenes, nitrones, and nitroxides, have been developed and studied in vitro and in vivo. Very few entered clinical trials.
Development of SOD mimics requires in-depth understanding of their mechanisms of biological action. Elucidation of both molecular features, essential for efficient ROS-scavenging in vivo, and factors limiting the potential side effects requires biologically relevant and, at the same time, relatively simple testing systems. This review discuses the advantages and limitations of genetically engineered SOD-deficient unicellular organisms, Escherichia coli and Saccharomyces cerevisiae as tools for investigating the efficacy and mechanisms of biological actions of SOD mimics. These simple systems allow the scrutiny of the minimal requirements for a functional SOD mimic: the association of a high catalytic activity for superoxide dismutation, low toxicity, and an efficient cellular uptake/biodistribution.
半个世纪的研究提供了明确的证据,表明超氧化物和其衍生的物质——活性氧物质(ROS)——在许多疾病和退行性过程中起着核心作用。这刺激了寻找能够预防氧化损伤的药物,并评估其治疗潜力的方法。
超氧化物歧化酶(SOD)作为一种治疗工具的局限性引起了人们对小分子、SOD 模拟物的关注,这些模拟物能够催化清除超氧化物。已经开发和研究了几类化合物,包括基于金属配合物的化合物,如金属卟啉、金属环腐啉、Mn(II) 环状多胺和 Mn(III) 席夫碱衍生物,以及基于非金属的化合物,如富勒烯、氮氧自由基和氮氧自由基,这些化合物在体外和体内进行了研究。很少有化合物进入临床试验。
SOD 模拟物的开发需要深入了解其生物学作用机制。阐明体内有效清除 ROS 所需的分子特征和限制潜在副作用的因素,需要具有生物学相关性且相对简单的测试系统。这篇综述讨论了遗传工程 SOD 缺陷的单细胞生物,大肠杆菌和酿酒酵母作为研究 SOD 模拟物的功效和生物学作用机制的工具的优缺点。这些简单的系统允许仔细检查功能性 SOD 模拟物的最低要求:与超氧化物歧化酶的高催化活性、低毒性和有效的细胞摄取/生物分布相关联。