Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, United States.
Inorg Chem. 2013 May 20;52(10):5677-91. doi: 10.1021/ic3012519. Epub 2013 May 6.
The different biological behavior of cationic Fe and Mn pyridylporphyrins in Escherichia coli and mouse studies prompted us to revisit and compare their chemistry. For that purpose, the series of ortho and meta isomers of Fe(III) meso-tetrakis-N-alkylpyridylporphyrins, alkyl being methyl to n-octyl, were synthesized and characterized by elemental analysis, UV/vis spectroscopy, mass spectrometry, lipophilicity, protonation equilibria of axial waters, metal-centered reduction potential, E(1/2) for M(III)P/M(II)P redox couple (M = Fe, Mn, P = porphyrin), kcat for the catalysis of O2(•-) dismutation, stability toward peroxide-driven porphyrin oxidative degradation (produced in the catalysis of ascorbate oxidation by MP), ability to affect growth of SOD-deficient E. coli, and toxicity to mice. Electron-deficiency of the metal site is modulated by the porphyrin ligand, which renders Fe(III) porphyrins ≥5 orders of magnitude more acidic than the analogous Mn(III) porphyrins, as revealed by the pKa1 of axially coordinated waters. The 5 log units difference in the acidity between the Mn and Fe sites in porphyrin translates into the predominance of tetracationic (OH)(H2O)FeP complexes relative to pentacationic (H2O)2MnP species at pH ∼7.8. This is additionally evidenced in large differences in the E(1/2) values of M(III)P/M(II)P redox couples. The presence of hydroxo ligand labilizes trans-axial water which results in higher reactivity of Fe relative to Mn center. The differences in the catalysis of O2(•-) dismutation (log kcat) between Fe and Mn porphyrins is modest, 2.5-5-fold, due to predominantly outer-sphere, with partial inner-sphere character of two reaction steps. However, the rate constant for the inner-sphere H2O2-based porphyrin oxidative degradation is 18-fold larger for (OH)(H2O)FeP than for (H2O)2MnP. The in vivo consequences of the differences between the Fe and Mn porphyrins were best demonstrated in SOD-deficient E. coli growth. On the basis of fairly similar log kcat(O2(•-)) values, a very similar effect on the growth of SOD-deficient E. coli was anticipated by both metalloporphyrins. Yet, while (H2O)2MnTE-2-PyP(5+) was fully efficacious at ≥20 μM, the Fe analogue (OH)(H2O)FeTE-2-PyP(4+) supported SOD-deficient E. coli growth at as much as 200-fold lower doses in the range of 0.1-1 μM. Moreover the pattern of SOD-deficient E. coli growth was different with Mn and Fe porphyrins. Such results suggested a different mode of action of these metalloporphyrins. Further exploration demonstrated that (1) 0.1 μM (OH)(H2O)FeTE-2-PyP(4+) provided similar growth stimulation as the 0.1 μM Fe salt, while the 20 μM Mn salt provides no protection to E. coli; and (2) 1 μM Fe porphyrin is fully degraded by 12 h in E. coli cytosol and growth medium, while Mn porphyrin is not. Stimulation of the aerobic growth of SOD-deficient E. coli by the Fe porphyrin is therefore due to iron acquisition. Our data suggest that in vivo, redox-driven degradation of Fe porphyrins resulting in Fe release plays a major role in their biological action. Possibly, iron reconstitutes enzymes bearing [4Fe-4S] clusters as active sites. Under the same experimental conditions, (OH)(H2O)FePs do not cause mouse arterial hypotension, whereas (H2O)2MnPs do, which greatly limits the application of Mn porphyrins in vivo.
阳离子 Fe 和 Mn 吡啶卟啉在大肠杆菌和小鼠研究中的不同生物学行为促使我们重新审视和比较它们的化学性质。为此,我们合成并表征了一系列邻位和间位异构体的 Fe(III) 中卟啉,烷基为甲基至正辛基,通过元素分析、紫外可见光谱、质谱、亲脂性、轴向水的质子化平衡、金属中心还原电位、E(1/2) for M(III)P/M(II)P 氧化还原偶联(M = Fe、Mn、P = 卟啉)、O2(•-)歧化反应的催化 kcat、过氧化物驱动的卟啉氧化降解的稳定性(在抗坏血酸氧化由 MP 催化时产生)、对 SOD 缺陷型大肠杆菌生长的影响以及对小鼠的毒性。金属位点的电子缺失由卟啉配体调节,这使得 Fe(III) 卟啉的酸度比类似的 Mn(III) 卟啉高 5 个数量级,这是由轴向配位水的 pKa1 揭示的。在 pH 值约为 7.8 时,卟啉中 Mn 和 Fe 位点之间的酸度差异为 5 个对数单位,这导致了四价(OH)(H2O)FeP 配合物相对于五价(H2O)2MnP 物种的优势。这在 M(III)P/M(II)P 氧化还原偶联的 E(1/2) 值的大差异中也得到了证明。羟基金属配体的不稳定导致反轴向水的反应性更高,这使得 Fe 相对于 Mn 中心具有更高的反应性。Fe 和 Mn 卟啉在 O2(•-)歧化反应(log kcat)的催化作用之间的差异是适度的,为 2.5-5 倍,这主要是由于两个反应步骤的外球,具有部分内球性质。然而,(OH)(H2O)FeP 基于 H2O2 的卟啉氧化降解的速率常数比(H2O)2MnP 大 18 倍。在 SOD 缺陷型大肠杆菌生长中,最好地证明了 Fe 和 Mn 卟啉之间差异的体内后果。基于相当相似的 log kcat(O2(•-)) 值,两种金属卟啉都预期对 SOD 缺陷型大肠杆菌的生长产生相似的影响。然而,虽然(H2O)2MnTE-2-PyP(5+)在 ≥20 μM 时完全有效,但 Fe 类似物(OH)(H2O)FeTE-2-PyP(4+)在 0.1-1 μM 的范围内以高达 200 倍的低剂量支持 SOD 缺陷型大肠杆菌的生长。此外,SOD 缺陷型大肠杆菌的生长模式也因 Mn 和 Fe 卟啉而不同。这些结果表明这些金属卟啉的作用模式不同。进一步的探索表明,(1)0.1 μM(OH)(H2O)FeTE-2-PyP(4+) 提供与 0.1 μM Fe 盐相同的生长刺激,而 20 μM Mn 盐对大肠杆菌没有保护作用;(2)1 μM Fe 卟啉在大肠杆菌胞质溶胶和生长培养基中在 12 小时内完全降解,而 Mn 卟啉则不然。因此,Fe 卟啉刺激 SOD 缺陷型大肠杆菌的需氧生长是由于铁的获取。我们的数据表明,在体内,氧化还原驱动的 Fe 卟啉降解导致铁释放在其生物学作用中起主要作用。可能是铁重新构成具有[4Fe-4S]簇作为活性位点的酶。在相同的实验条件下,(OH)(H2O)FePs 不会导致小鼠动脉低血压,而(H2O)2MnPs 会导致小鼠动脉低血压,这极大地限制了 Mn 卟啉在体内的应用。