Suppr超能文献

开花植物异源多倍体的时间表。

The timetable for allopolyploidy in flowering plants.

机构信息

Section of Integrative Biology, University of Texas, Austin, TX 78713, USA.

出版信息

Ann Bot. 2013 Nov;112(7):1201-8. doi: 10.1093/aob/mct194. Epub 2013 Aug 21.

Abstract

BACKGROUND

Our understanding of the processes and dynamics of allopolyploid speciation, the long-term consequences of ploidal change, and the genetic and chromosomal changes in new emerged allopolyploids has substantially increased during the past few decades. Yet we remain uncertain about the time since lineage divergence when two taxa are capable of spawning such entities. Indeed, the matter has seemed intractable. Knowledge of the window of opportunity for allopolyploid production is very important because it provides temporal insight into a key evolutionary process, and a temporal reference against which other modes of speciation may be measured.

SCOPE

This Viewpoint paper reviews and integrates published information on the crossability of herbaceous species and the fertility of their hybrids in relation to species' divergence times. Despite limitations in methodology and sampling, the estimated times to hybrid sterility are somewhat congruent across disparate lineages. Whereas the waiting time for hybrid sterility is roughly 4-5 million years, the waiting time for cross-incompatibility is roughly 8-10 million years, sometimes considerably more. Strict allopolyploids may be formed in the intervening time window. The progenitors of several allopolyploids diverged between 4 and 6 million years before allopolyploid synthesis, as expected. This is the first study to propose a general temporal framework for strict allopolyploidy. This Viewpoint paper hopefully will stimulate interest in studying the tempo of speciation and the tempo of reproductive isolation in general.

摘要

背景

在过去的几十年中,我们对异源多倍体物种形成的过程和动态、倍性变化的长期后果以及新出现的异源多倍体的遗传和染色体变化有了更深入的了解。然而,我们仍然不确定两个分类单元能够产生这种实体的时间。实际上,这个问题似乎难以解决。了解异源多倍体产生的机会窗口非常重要,因为它提供了对关键进化过程的时间洞察力,并提供了一个时间参考,其他物种形成模式可以与之相比。

范围

本文观点综述并整合了已发表的关于草本物种杂交亲和性及其杂种育性与物种分化时间的关系的信息。尽管方法和采样存在局限性,但杂种不育的估计时间在不同谱系之间有些一致。杂种不育的等待时间约为 4-500 万年,而杂交不亲和的等待时间约为 8-1000 万年,有时更长。严格的异源多倍体可能在中间的时间窗口形成。几个异源多倍体的祖先在异源多倍体合成之前大约 4 到 600 万年就已经分化,这与预期的结果一致。这是第一个提出严格异源多倍体一般时间框架的研究。本文观点综述希望能激发人们对研究物种形成的时间和生殖隔离的时间的兴趣。

相似文献

1
The timetable for allopolyploidy in flowering plants.
Ann Bot. 2013 Nov;112(7):1201-8. doi: 10.1093/aob/mct194. Epub 2013 Aug 21.
2
Effect of Whole-Genome Duplication on the Evolutionary Rescue of Sterile Hybrid Monkeyflowers.
Plant Commun. 2020 Jul 3;1(6):100093. doi: 10.1016/j.xplc.2020.100093. eCollection 2020 Nov 9.
3
Hybrid incompatibility is acquired faster in annual than in perennial species of sunflower and tarweed.
Evolution. 2014 Mar;68(3):893-900. doi: 10.1111/evo.12297. Epub 2013 Nov 15.
4
The role of deep hybridization in fern speciation: Examples from the Thelypteridaceae.
Am J Bot. 2024 Aug;111(8):e16388. doi: 10.1002/ajb2.16388. Epub 2024 Aug 12.
7
Multiple mechanisms and challenges for the application of allopolyploidy in plants.
Int J Mol Sci. 2012;13(7):8696-8721. doi: 10.3390/ijms13078696. Epub 2012 Jul 13.
8
Gene expression bias between the subgenomes of allopolyploid hybrids is an emergent property of the kinetics of expression.
PLoS Comput Biol. 2024 Jan 16;20(1):e1011803. doi: 10.1371/journal.pcbi.1011803. eCollection 2024 Jan.
10
Hybrid speciation in angiosperms: parental divergence drives ploidy.
New Phytol. 2009;182(2):507-518. doi: 10.1111/j.1469-8137.2009.02767.x. Epub 2008 Feb 11.

引用本文的文献

1
Accurate Inference of the Polyploid Continuum Using Forward-Time Simulations.
Mol Biol Evol. 2024 Dec 6;41(12). doi: 10.1093/molbev/msae241.
4
Has the Polyploid Wave Ebbed?
Front Plant Sci. 2020 Mar 10;11:251. doi: 10.3389/fpls.2020.00251. eCollection 2020.
5
Plant speciation in the age of climate change.
Ann Bot. 2019 Nov 15;124(5):769-775. doi: 10.1093/aob/mcz108.
6
Effects of ploidy level and haplotype on variation of photosynthetic traits: Novel evidence from two Fragaria species.
PLoS One. 2017 Jun 23;12(6):e0179899. doi: 10.1371/journal.pone.0179899. eCollection 2017.
7
Genetic differentiation and admixture between sibling allopolyploids in the Dactylorhiza majalis complex.
Heredity (Edinb). 2016 Apr;116(4):351-61. doi: 10.1038/hdy.2015.98. Epub 2015 Nov 25.
8
Phototropic solar tracking in sunflower plants: an integrative perspective.
Ann Bot. 2016 Jan;117(1):1-8. doi: 10.1093/aob/mcv141. Epub 2015 Sep 29.

本文引用的文献

2
SELECTION FOR REPRODUCTIVE ISOLATION BETWEEN TWO POPULATIONS OF MAIZE, ZEA MAYS L.
Evolution. 1969 Dec;23(4):534-547. doi: 10.1111/j.1558-5646.1969.tb03539.x.
5
Interactions of hybridization and mating systems: a case study in Leptosiphon (Polemoniaceae).
Am J Bot. 2013 Jun;100(6):1002-13. doi: 10.3732/ajb.1200616. Epub 2013 Mar 17.
6
Hybridization and speciation.
J Evol Biol. 2013 Feb;26(2):229-46. doi: 10.1111/j.1420-9101.2012.02599.x.
7
Genetic analysis of hybrid seed formation ability of Brassica rapa in intergeneric crossings with Raphanus sativus.
Theor Appl Genet. 2013 Mar;126(3):837-46. doi: 10.1007/s00122-012-2021-5. Epub 2012 Dec 1.
8
The long wait for hybrid sterility in flowering plants.
New Phytol. 2012 Nov;196(3):666-670. doi: 10.1111/j.1469-8137.2012.04309.x. Epub 2012 Sep 12.
9
Patterns of reproductive isolation in Nolana (Chilean bellflower).
Evolution. 2012 Aug;66(8):2628-36. doi: 10.1111/j.1558-5646.2012.01607.x. Epub 2012 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验