From the Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan.
J Biol Chem. 2013 Oct 11;288(41):29247-51. doi: 10.1074/jbc.M113.502963. Epub 2013 Aug 21.
A decrease in water activity was thought to result in smaller enthalpy change values during PPi hydrolysis, indicating the importance of solvation for the reaction. However, the physiological significance of this phenomenon is unknown. Here, we combined biochemistry and calorimetry to solve this problem using NaCl, a physiologically occurring water activity-reducing reagent. The pyrophosphatase activities of extremely halophilic Haloarcula japonica, which can grow at ∼4 M NaCl, and non-halophilic Escherichia coli and Saccharomyces cerevisiae were maximal at 2.0 and 0.1 M NaCl, respectively. Thus, halophilic and non-halophilic pyrophosphatases exhibit distinct maximal activities at different NaCl concentration ranges. Upon calorimetry, the same exothermic enthalpy change of -35 kJ/mol was obtained for the halophile and non-halophiles at 1.5-4.0 and 0.1-2.0 M NaCl, respectively. These results show that solvation changes caused by up to 4.0 M NaCl (water activity of ∼0.84) do not affect the enthalpy change in PPi hydrolysis. It has been postulated that PPi is an ATP analog, having a so-called high energy phosphate bond, and that the hydrolysis of both compounds is enthalpically driven. Therefore, our results indicate that the hydrolysis of high energy phosphate compounds, which are responsible for biological energy conversion, is enthalpically driven within the physiological limits of NaCl.
水活度的降低被认为会导致 PPi 水解过程中焓变值变小,这表明了溶剂化对于反应的重要性。然而,这一现象的生理意义尚不清楚。在这里,我们使用 NaCl(一种生理上存在的降低水活度的试剂)将生物化学和量热法结合起来解决这个问题。在生理盐度为 4M 的极端嗜盐菌 Haloarcula japonica 中,焦磷酸酶的活性在 2.0M NaCl 时达到最大值,而非嗜盐菌大肠杆菌和酿酒酵母的焦磷酸酶活性在 0.1M NaCl 时达到最大值。因此,嗜盐和非嗜盐的焦磷酸酶在不同的 NaCl 浓度范围内表现出明显的最大活性。通过量热法,在 1.5-4.0M NaCl 和 0.1-2.0M NaCl 范围内,嗜盐菌和非嗜盐菌的放热焓变均为-35kJ/mol。这些结果表明,高达 4.0M NaCl(水活度约为 0.84)引起的溶剂化变化不会影响 PPi 水解的焓变。有人假设 PPi 是一种 ATP 类似物,具有所谓的高能磷酸键,并且这两种化合物的水解都是由焓驱动的。因此,我们的结果表明,在 NaCl 的生理范围内,负责生物能量转换的高能磷酸化合物的水解是由焓驱动的。