Suppr超能文献

通过全搜索计算对接预测蛋白质-DNA 相互作用。

Predicting protein-DNA interactions by full search computational docking.

机构信息

San Diego Supercomputer Center, University of California, San Diego, La Jolla, California, 92093.

出版信息

Proteins. 2013 Dec;81(12):2106-18. doi: 10.1002/prot.24395. Epub 2013 Oct 18.

Abstract

Protein-DNA interactions are essential for many biological processes. X-ray crystallography can provide high-resolution structures, but protein-DNA complexes are difficult to crystallize and typically contain only small DNA fragments. Thus, there is a need for computational methods that can provide useful predictions to give insights into mechanisms and guide the design of new experiments. We used the program DOT, which performs an exhaustive, rigid-body search between two macromolecules, to investigate four diverse protein-DNA interactions. Here, we compare our computational results with subsequent experimental data on related systems. In all cases, the experimental data strongly supported our structural hypotheses from the docking calculations: a mechanism for weak, nonsequence-specific DNA binding by a transcription factor, a large DNA-binding footprint on the surface of the DNA-repair enzyme uracil-DNA glycosylase (UNG), viral and host DNA-binding sites on the catalytic domain of HIV integrase, and a three-DNA-contact model of the linker histone bound to the nucleosome. In the case of UNG, the experimental design was based on the DNA-binding surface found by docking, rather than the much smaller surface observed in the crystallographic structure. These comparisons demonstrate that the DOT electrostatic energy gives a good representation of the distinctive electrostatic properties of DNA and DNA-binding proteins. The large, favourably ranked clusters resulting from the dockings identify active sites, map out large DNA-binding sites, and reveal multiple DNA contacts with a protein. Thus, computational docking can not only help to identify protein-DNA interactions in the absence of a crystal structure, but also expand structural understanding beyond known crystallographic structures.

摘要

蛋白质与 DNA 的相互作用对于许多生物过程至关重要。X 射线晶体学可以提供高分辨率的结构,但蛋白质-DNA 复合物很难结晶,并且通常只包含小的 DNA 片段。因此,需要计算方法来提供有用的预测,以深入了解机制并指导新实验的设计。我们使用了 DOT 程序,该程序在两个大分子之间执行详尽的刚体搜索,以研究四种不同的蛋白质-DNA 相互作用。在这里,我们将我们的计算结果与后续在相关系统上的实验数据进行比较。在所有情况下,实验数据都强烈支持我们从对接计算中得出的结构假设:转录因子的弱、非序列特异性 DNA 结合机制,DNA 修复酶尿嘧啶-DNA 糖基化酶 (UNG) 表面上的大 DNA 结合足迹,HIV 整合酶催化结构域上的病毒和宿主 DNA 结合位点,以及连接组蛋白与核小体结合的三 DNA 接触模型。在 UNG 的情况下,实验设计基于对接发现的 DNA 结合表面,而不是晶体结构中观察到的小得多的表面。这些比较表明,DOT 静电能很好地代表了 DNA 和 DNA 结合蛋白的独特静电特性。对接产生的大、有利的聚类确定了活性位点,描绘了大的 DNA 结合位点,并揭示了蛋白质与 DNA 的多个接触。因此,计算对接不仅可以帮助在没有晶体结构的情况下识别蛋白质-DNA 相互作用,而且还可以扩展对已知晶体结构之外的结构的理解。

相似文献

3
C-Terminal Domain of Integrase Binds between the Two Active Sites.整合酶的C末端结构域结合于两个活性位点之间。
J Chem Theory Comput. 2015 Sep 8;11(9):4500-11. doi: 10.1021/ct501125r. Epub 2015 Aug 6.

本文引用的文献

1
DOT2: Macromolecular docking with improved biophysical models.DOT2:使用改进的生物物理模型进行大分子对接。
J Comput Chem. 2013 Jul 30;34(20):1743-58. doi: 10.1002/jcc.23304. Epub 2013 May 21.
6
F2Dock: fast Fourier protein-protein docking.F2Dock:快速傅里叶蛋白-蛋白对接。
IEEE/ACM Trans Comput Biol Bioinform. 2011 Jan-Mar;8(1):45-58. doi: 10.1109/TCBB.2009.57.
8
An integrated suite of fast docking algorithms.一套集成的快速对接算法套件。
Proteins. 2010 Nov 15;78(15):3197-204. doi: 10.1002/prot.22790.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验