Suppr超能文献

DNA 糖苷酶酶对受损 DNA 碱基的检测。

Detection of damaged DNA bases by DNA glycosylase enzymes.

机构信息

Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, WBSB 314, 725 North Wolfe Street, Baltimore, Maryland 21205, USA.

出版信息

Biochemistry. 2010 Jun 22;49(24):4957-67. doi: 10.1021/bi100593a.

Abstract

A fundamental and shared process in all forms of life is the use of DNA glycosylase enzymes to excise rare damaged bases from genomic DNA. Without such enzymes, the highly ordered primary sequences of genes would rapidly deteriorate. Recent structural and biophysical studies are beginning to reveal a fascinating multistep mechanism for damaged base detection that begins with short-range sliding of the glycosylase along the DNA chain in a distinct conformation we call the search complex (SC). Sliding is frequently punctuated by the formation of a transient "interrogation" complex (IC) where the enzyme extrahelically inspects both normal and damaged bases in an exosite pocket that is distant from the active site. When normal bases are presented in the exosite, the IC rapidly collapses back to the SC, while a damaged base will efficiently partition forward into the active site to form the catalytically competent excision complex (EC). Here we review the unique problems associated with enzymatic detection of rare damaged DNA bases in the genome and emphasize how each complex must have specific dynamic properties that are tuned to optimize the rate and efficiency of damage site location.

摘要

在所有生命形式中,一个基本且共同的过程是利用 DNA 糖苷酶从基因组 DNA 中切除罕见的受损碱基。如果没有这种酶,基因的高度有序的一级序列将迅速恶化。最近的结构和生物物理研究开始揭示一种迷人的多步骤损伤碱基检测机制,该机制始于糖苷酶沿着 DNA 链在我们称为搜索复合物 (SC) 的独特构象中进行短程滑动。滑动过程中经常会形成短暂的“询问”复合物 (IC),其中酶在远离活性位点的外切位点口袋中对外侧的正常和受损碱基进行外切检查。当外切位点呈现正常碱基时,IC 会迅速回落到 SC,而受损碱基则会有效地向前分配到活性位点,形成催化有效的切除复合物 (EC)。在这里,我们回顾了与在基因组中酶促检测罕见受损 DNA 碱基相关的独特问题,并强调了每个复合物必须具有特定的动态特性,这些特性被调谐以优化损伤部位定位的速率和效率。

相似文献

1
Detection of damaged DNA bases by DNA glycosylase enzymes.
Biochemistry. 2010 Jun 22;49(24):4957-67. doi: 10.1021/bi100593a.
3
The structural location of DNA lesions in nucleosome core particles determines accessibility by base excision repair enzymes.
J Biol Chem. 2013 May 10;288(19):13863-75. doi: 10.1074/jbc.M112.441444. Epub 2013 Mar 29.
5
Uracil-DNA glycosylase: Structural, thermodynamic and kinetic aspects of lesion search and recognition.
Mutat Res. 2010 Mar 1;685(1-2):11-20. doi: 10.1016/j.mrfmmm.2009.10.017. Epub 2009 Nov 10.
7
Critical Sites of DNA Backbone Integrity for Damaged Base Removal by Formamidopyrimidine-DNA Glycosylase.
Biochemistry. 2019 Jun 18;58(24):2740-2749. doi: 10.1021/acs.biochem.9b00134. Epub 2019 Jun 3.
8
DNA glycosylase recognition and catalysis.
Curr Opin Struct Biol. 2004 Feb;14(1):43-9. doi: 10.1016/j.sbi.2004.01.003.
9
Structure and function in the uracil-DNA glycosylase superfamily.
Mutat Res. 2000 Aug 30;460(3-4):165-81. doi: 10.1016/s0921-8777(00)00025-2.
10
Uracil DNA glycosylase: insights from a master catalyst.
Arch Biochem Biophys. 2001 Dec 1;396(1):1-9. doi: 10.1006/abbi.2001.2605.

引用本文的文献

1
Chemical Biomarkers of Exposure and Early Damage from Potentially Carcinogenic Airborne Pollutants.
Ann Cancer Epidemiol. 2019 Sep;3. doi: 10.21037/ace.2019.08.01. Epub 2019 Sep 6.
2
Characterizing the excision of 7,8-dihydro-8-oxoadenine by thymine DNA glycosylase.
J Biol Chem. 2025 Jun 16;301(7):110363. doi: 10.1016/j.jbc.2025.110363.
3
Mechanisms of DNA Damage Recognition by UDG and PARP1 in the Nucleosome.
Biomolecules. 2025 Apr 30;15(5):649. doi: 10.3390/biom15050649.
4
The 'very moment' when UDG recognizes a flipped-out uracil base in dsDNA.
Sci Rep. 2025 Mar 7;15(1):7993. doi: 10.1038/s41598-025-91705-6.
7
FSHing for DNA Damage: Key Features of MutY Detection of 8-Oxoguanine:Adenine Mismatches.
Acc Chem Res. 2024 Apr 2;57(7):1019-1031. doi: 10.1021/acs.accounts.3c00759. Epub 2024 Mar 12.
9
Obstacles and opportunities for base excision repair in chromatin.
DNA Repair (Amst). 2022 Aug;116:103345. doi: 10.1016/j.dnarep.2022.103345. Epub 2022 May 28.
10
Structural basis for substrate discrimination by repair enzyme, AlkB.
RSC Adv. 2018 Jan 3;8(3):1281-1291. doi: 10.1039/c7ra11333a. eCollection 2018 Jan 2.

本文引用的文献

2
Encounter and extrusion of an intrahelical lesion by a DNA repair enzyme.
Nature. 2009 Dec 10;462(7274):762-6. doi: 10.1038/nature08561.
3
Uracil DNA glycosylase activity on nucleosomal DNA depends on rotational orientation of targets.
J Biol Chem. 2010 Jan 22;285(4):2876-85. doi: 10.1074/jbc.M109.073544. Epub 2009 Nov 19.
4
Uracil-DNA glycosylase: Structural, thermodynamic and kinetic aspects of lesion search and recognition.
Mutat Res. 2010 Mar 1;685(1-2):11-20. doi: 10.1016/j.mrfmmm.2009.10.017. Epub 2009 Nov 10.
5
Nonspecifically bound proteins spin while diffusing along DNA.
Nat Struct Mol Biol. 2009 Dec;16(12):1224-9. doi: 10.1038/nsmb.1716. Epub 2009 Nov 8.
7
Nontarget DNA binding shapes the dynamic landscape for enzymatic recognition of DNA damage.
Nucleic Acids Res. 2009 Jun;37(11):3493-500. doi: 10.1093/nar/gkp161. Epub 2009 Apr 1.
8
An end to 40 years of mistakes in DNA-protein association kinetics?
Biochem Soc Trans. 2009 Apr;37(Pt 2):343-8. doi: 10.1042/BST0370343.
9
Protein sliding along DNA: dynamics and structural characterization.
J Mol Biol. 2009 Jan 30;385(4):1087-97. doi: 10.1016/j.jmb.2008.11.016. Epub 2008 Nov 20.
10
Human alkyladenine DNA glycosylase employs a processive search for DNA damage.
Biochemistry. 2008 Nov 4;47(44):11434-45. doi: 10.1021/bi801046y. Epub 2008 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验