Suppr超能文献

一套集成的快速对接算法套件。

An integrated suite of fast docking algorithms.

机构信息

Raymond and Beverly Sackler Faculty of Exact Sciences, Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.

出版信息

Proteins. 2010 Nov 15;78(15):3197-204. doi: 10.1002/prot.22790.

Abstract

The CAPRI experiment (Critical Assessment of Predicted Interactions) simulates realistic and diverse docking challenges, each case having specific properties that may be exploited by docking algorithms. Motivated by the different CAPRI challenges, we developed and implemented a comprehensive suite of docking algorithms. These were incorporated into a dynamic docking protocol, consisting of four main stages: (1) Biological and bioinformatics research aiming to predict the binding site residues, to define distance constraints between interface atoms and to analyze the flexibility of molecules; (2) Rigid or flexible docking, performed by the PatchDock or FlexDock method, which utilizes the information gathered in the previous step. Symmetric complexes are predicted by the SymmDock method; (3) Flexible refinement and reranking of the rigid docking solution candidates, performed by FiberDock; and finally, (4) clustering and filtering the results based on energy funnels. We analyzed the performance of our docking protocol on a large benchmark and on recent CAPRI targets. The analysis has demonstrated the importance of biological information gathering prior to docking, which significantly increased the docking success rate, and of the refinement and rescoring stage that significantly improved the ranking of the rigid docking solutions. Our failures were mostly a result of mishandling backbone flexibility, inaccurate homology modeling, or incorrect biological assumptions. Most of the methods are available at http://bioinfo3d.cs.tau.ac.il/.

摘要

CAPRI 实验(预测相互作用的关键评估)模拟了现实和多样化的对接挑战,每个案例都具有特定的性质,这些性质可能被对接算法利用。受不同的 CAPRI 挑战的启发,我们开发并实现了一套全面的对接算法。这些算法被纳入一个动态对接协议中,该协议由四个主要阶段组成:(1)旨在预测结合位点残基、定义界面原子之间的距离约束以及分析分子灵活性的生物和生物信息学研究;(2)通过 PatchDock 或 FlexDock 方法进行刚性或柔性对接,该方法利用前一步骤中收集的信息。SymmDock 方法预测对称复合物;(3)通过 FiberDock 对刚性对接解决方案候选者进行灵活的细化和重新排序;最后,(4)根据能量漏斗对结果进行聚类和过滤。我们在一个大型基准测试和最近的 CAPRI 目标上分析了我们的对接协议的性能。分析表明,在对接之前收集生物信息的重要性,这大大提高了对接成功率,以及细化和重新评分阶段的重要性,这显著提高了刚性对接解决方案的排名。我们的失败主要是由于错误处理骨架灵活性、不准确的同源建模或不正确的生物学假设。大多数方法都可在 http://bioinfo3d.cs.tau.ac.il/ 获取。

相似文献

1
An integrated suite of fast docking algorithms.
Proteins. 2010 Nov 15;78(15):3197-204. doi: 10.1002/prot.22790.
2
Geometry-based flexible and symmetric protein docking.
Proteins. 2005 Aug 1;60(2):224-31. doi: 10.1002/prot.20562.
3
FiberDock: a web server for flexible induced-fit backbone refinement in molecular docking.
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W457-61. doi: 10.1093/nar/gkq373. Epub 2010 May 11.
4
Approaches to Backbone Flexibility in Protein-Protein Docking.
Methods Mol Biol. 2024;2780:45-68. doi: 10.1007/978-1-0716-3985-6_4.
5
SymmRef: a flexible refinement method for symmetric multimers.
Proteins. 2011 Sep;79(9):2607-23. doi: 10.1002/prot.23082. Epub 2011 Jun 30.
6
Protein-protein and peptide-protein docking and refinement using ATTRACT in CAPRI.
Proteins. 2017 Mar;85(3):391-398. doi: 10.1002/prot.25196. Epub 2016 Nov 24.
7
FireDock: a web server for fast interaction refinement in molecular docking.
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W229-32. doi: 10.1093/nar/gkn186. Epub 2008 Apr 19.
9
Improving CAPRI predictions: optimized desolvation for rigid-body docking.
Proteins. 2005 Aug 1;60(2):308-13. doi: 10.1002/prot.20575.
10
New additions to the ClusPro server motivated by CAPRI.
Proteins. 2017 Mar;85(3):435-444. doi: 10.1002/prot.25219. Epub 2017 Jan 5.

引用本文的文献

1
Driven Multi-Epitope Subunit Candidate Vaccine against Bovine Tuberculosis.
Transbound Emerg Dis. 2024 Sep 4;2024:5534041. doi: 10.1155/2024/5534041. eCollection 2024.
2
Aptamer based immunotherapy: a potential solid tumor therapeutic.
Front Immunol. 2025 Feb 17;16:1536569. doi: 10.3389/fimmu.2025.1536569. eCollection 2025.
3
4
Protein-protein interfaces in molecular glue-induced ternary complexes: classification, characterization, and prediction.
RSC Chem Biol. 2023 Jan 3;4(3):192-215. doi: 10.1039/d2cb00207h. eCollection 2023 Mar 8.
5
Bioengineering and computational analysis of programmed cell death ligand-1 monoclonal antibody.
Front Immunol. 2022 Oct 21;13:1012499. doi: 10.3389/fimmu.2022.1012499. eCollection 2022.
6
Development of multivalent vaccine targeting M segment of Crimean Congo Hemorrhagic Fever Virus (CCHFV) using immunoinformatic approaches.
Saudi J Biol Sci. 2022 Apr;29(4):2372-2388. doi: 10.1016/j.sjbs.2021.12.004. Epub 2021 Dec 10.
8
Robustification of RosettaAntibody and Rosetta SnugDock.
PLoS One. 2021 Mar 25;16(3):e0234282. doi: 10.1371/journal.pone.0234282. eCollection 2021.
10
A phenotype-directed chemical screen identifies ponalrestat as an inhibitor of the plant flavin monooxygenase YUCCA in auxin biosynthesis.
J Biol Chem. 2019 Dec 27;294(52):19923-19933. doi: 10.1074/jbc.RA119.010480. Epub 2019 Nov 15.

本文引用的文献

2
The structural and energetic basis for high selectivity in a high-affinity protein-protein interaction.
Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10080-5. doi: 10.1073/pnas.0910756107. Epub 2010 May 17.
4
FiberDock: Flexible induced-fit backbone refinement in molecular docking.
Proteins. 2010 May 1;78(6):1503-19. doi: 10.1002/prot.22668.
5
The structural basis of Arf effector specificity: the crystal structure of ARF6 in a complex with JIP4.
EMBO J. 2009 Sep 16;28(18):2835-45. doi: 10.1038/emboj.2009.209. Epub 2009 Jul 30.
8
Protein-protein docking benchmark version 3.0.
Proteins. 2008 Nov 15;73(3):705-9. doi: 10.1002/prot.22106.
9
FireDock: a web server for fast interaction refinement in molecular docking.
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W229-32. doi: 10.1093/nar/gkn186. Epub 2008 Apr 19.
10
Structure of the yeast tRNA m7G methylation complex.
Structure. 2008 Jan;16(1):52-61. doi: 10.1016/j.str.2007.10.025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验