Aguirre Yolanda, Cabrera Nallely, Aguirre Beatriz, Pérez-Montfort Ruy, Hernandez-Santoyo Alejandra, Reyes-Vivas Horacio, Enríquez-Flores Sergio, de Gómez-Puyou Marietta Tuena, Gómez-Puyou Armando, Sanchez-Ruiz Jose M, Costas Miguel
Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F, México.
Proteins. 2014 Feb;82(2):323-35. doi: 10.1002/prot.24398. Epub 2013 Oct 18.
It is generally assumed that the amino acids that exist in all homologous enzymes correspond to residues that participate in catalysis, or that are essential for folding and stability. Although this holds for catalytic residues, the function of conserved noncatalytic residues is not clear. It is not known if such residues are of equal importance and have the same role in different homologous enzymes. In humans, the E104D mutation in triosephosphate isomerase (TIM) is the most frequent mutation in the autosomal diseases named "TPI deficiencies." We explored if the E104D mutation has the same impact in TIMs from four different organisms (Homo sapiens, Giardia lamblia, Trypanosoma cruzi, and T. brucei). The catalytic properties were not significantly affected by the mutation, but it affected the rate and extent of formation of active dimers from unfolded monomers differently. Scanning calorimetry experiments indicated that the mutation was in all cases destabilizing, but the mutation effect on rates of irreversible denaturation and transition-state energetics were drastically dependent on the TIM background. For instance, the E104D mutation produce changes in activation energy ranging from 430 kJ mol(-1) in HsTIM to -78 kJ mol(-1) in TcTIM. Thus, in TIM the role of a conserved noncatalytic residue is drastically dependent on its molecular background. Accordingly, it would seem that because each protein has a particular sequence, and a distinctive set of amino acid interactions, it should be regarded as a unique entity that has evolved for function and stability in the organisms to which it belongs.
一般认为,所有同源酶中存在的氨基酸对应于参与催化的残基,或者对折叠和稳定性至关重要的残基。虽然这适用于催化残基,但保守的非催化残基的功能尚不清楚。尚不清楚这些残基在不同的同源酶中是否具有同等重要性和相同作用。在人类中,磷酸丙糖异构酶(TIM)中的E104D突变是常染色体疾病“TPI缺乏症”中最常见的突变。我们探究了E104D突变在来自四种不同生物体(智人、蓝氏贾第鞭毛虫、克氏锥虫和布氏锥虫)的TIM中是否具有相同影响。该突变对催化特性没有显著影响,但它对从未折叠单体形成活性二聚体的速率和程度的影响有所不同。扫描量热法实验表明,在所有情况下该突变都会使稳定性降低,但该突变对不可逆变性速率和过渡态能量学的影响在很大程度上取决于TIM背景。例如,E104D突变导致活化能的变化范围从HsTIM中的430 kJ mol(-1)到TcTIM中的-78 kJ mol(-1)。因此,在TIM中,保守的非催化残基的作用在很大程度上取决于其分子背景。相应地,似乎由于每种蛋白质都有特定的序列以及独特的一组氨基酸相互作用,它应被视为一个独特的实体,已为其所属生物体中的功能和稳定性而进化。