Suppr超能文献

三磷酸甘油醛异构酶中底物分布的差示傅里叶变换红外光谱研究。

Difference FTIR Studies of Substrate Distribution in Triosephosphate Isomerase.

机构信息

Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States.

Ph. D. Programs in Chemistry and Biochemistry, CUNY Graduate Center and Department of Chemistry, York College of CUNY , Jamaica, New York 11451, United States.

出版信息

J Phys Chem B. 2017 Nov 2;121(43):10036-10045. doi: 10.1021/acs.jpcb.7b08114. Epub 2017 Oct 20.

Abstract

Triosephosphate isomerase (TIM) catalyzes the interconversion between dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate (GAP), via an enediol(ate) intermediate. Determination of substrate population distribution in the TIM/substrate reaction mixture at equilibrium and characterization of the substrate-enzyme interactions in the Michaelis complex are ongoing efforts toward the understanding of the TIM reaction mechanism. By using isotope-edited difference Fourier transform infrared studies with unlabeled and C-labeled substrates at specific carbon(s), we are able to show that in the reaction mixture at equilibrium the keto DHAP is the dominant species and the populations of aldehyde GAP and enediol(ate) are very low, consistent with the results from previous X-ray structural and C NMR studies. Furthermore, within the DHAP side of the Michaelis complex, there is a set of conformational substates that can be characterized by the different C2═O stretch frequencies. The C2═O frequency differences reflect the different degree of the C2═O bond polarization due to hydrogen bonding from active site residues. The C2═O bond polarization has been considered as an important component for substrate activation within the Michaelis complex. We have found that in the enzyme-substrate reaction mixture with TIM from different organisms the number of substates and their population distribution within the DHAP side of the Michaelis complex may be different. These discoveries provide a rare opportunity to probe the interconversion dynamics of these DHAP substates and form the bases for the future studies to determine if the TIM-catalyzed reaction follows a simple linear reaction pathway, as previously believed, or follows parallel reaction pathways, as suggested in another enzyme system that also shows a set of substates in the Michaelis complex.

摘要

磷酸丙糖异构酶(TIM)通过烯二醇(ate)中间物催化二羟丙酮磷酸(DHAP)和 d-甘油醛 3-磷酸(GAP)之间的相互转化。确定平衡时 TIM/底物反应混合物中底物群体分布,并对 Michaelis 复合物中的底物-酶相互作用进行特征描述,这些都是理解 TIM 反应机制的持续努力。通过使用未标记和 C 标记的底物在特定碳上的同位素编辑差示傅里叶变换红外研究,我们能够表明,在平衡时的反应混合物中,酮 DHAP 是主要物种,醛 GAP 和烯二醇(ate)的群体非常低,与之前的 X 射线结构和 C NMR 研究结果一致。此外,在 Michaelis 复合物的 DHAP 侧,存在一组构象亚基,可以通过不同的 C2═O 伸缩频率来表征。C2═O 频率差异反映了由于来自活性位点残基的氢键,C2═O 键极化的不同程度。C2═O 键极化被认为是 Michaelis 复合物中底物活化的重要组成部分。我们发现,在来自不同生物体的 TIM 的酶-底物反应混合物中,亚基的数量及其在 Michaelis 复合物的 DHAP 侧的群体分布可能不同。这些发现为研究这些 DHAP 亚基的互变异构动力学提供了难得的机会,并为未来的研究奠定了基础,以确定 TIM 催化的反应是否遵循以前认为的简单线性反应途径,或者是否遵循平行反应途径,正如另一个也显示 Michaelis 复合物中亚基的酶系统所建议的那样。

相似文献

本文引用的文献

4
The dynamical nature of enzymatic catalysis.酶催化的动态本质。
Acc Chem Res. 2015 Feb 17;48(2):407-13. doi: 10.1021/ar5002928. Epub 2014 Dec 24.
7
Enzyme architecture: on the importance of being in a protein cage.酶的结构:处于蛋白质笼中的重要性
Curr Opin Chem Biol. 2014 Aug;21:1-10. doi: 10.1016/j.cbpa.2014.03.001. Epub 2014 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验